The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10−7. Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm3). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles.
The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, , where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians (interquartile range, IQRs) of IHVS, MVDE, BD, EqMRI, 2CXM and ETM were vb = 0.7(0.3)%, 1.1(0.4)%, 1.1(0.4)%, 1.4(0.3)%, 1.2(1.8)% and 0.1(0.2)%, respectively. Variances, expressed by the difference between third and first quartiles (IQR) were highest for the 2CXM for all muscle groups. High correlations between the values in four muscle groups—medial, cranial, lateral thigh and lower leg - estimated with MRI and histology were found between BD and EqMRI, MVDE and 2CXM and IHVS and ETM. Except for the ETM, no significant differences between the vb medians of all MRI methods were revealed with the Wilcoxon rank sum test. The same holds for all muscle regions using the 2CXM and MVDE. Except for cranial thigh muscle, no significant difference was found between EqMRI and MVDE. And except for the cranial thigh and the lower leg muscle, there was also no significant difference between the vb medians of BD and MVDE. Overall, there was good vb agreement between histology and the BPCA MRI methods and the 2CXM LMCA approach with the exception of the ETM method. Although LMCA models have the ...
The aim of the study was to develop a suitable animal model for validating dynamic contrast-enhanced magnetic resonance imaging perfusion measurements. A total of 8 pigs were investigated by DCE-MRI. Perfusion was determined on the hind leg musculature. An ultrasound flow probe placed around the femoral artery provided flow measurements independent of MRI and served as the standard of reference. Images were acquired on a 1.5 T MRI scanner using a 3D T1-weighted gradient-echo sequence. An arterial catheter for local injection was implanted in the femoral artery. Continuous injection of adenosine for vasodilation resulted in steady blood flow levels up to four times the baseline level. In this way, three different stable perfusion levels were induced and measured. A central venous catheter was used for injection of two different types of contrast media. A low-molecular weight contrast medium and a blood pool contrast medium were used. A total of 6 perfusion measurements were performed with a time interval of about 20–25 min without significant differences in the arterial input functions. In conclusion the accuracy of DCE-MRI-based perfusion measurement can be validated by comparison of the integrated perfusion signal of the hind leg musculature with the blood flow values measured with the ultrasound flow probe around the femoral artery.
We present a method to efficiently separate signal in magnetic resonance imaging (MRI) into a base signal S0, representing the mainly T1-weighted component without T2*-relaxation, and its T2*-weighted counterpart by the rapid acquisition of multiple contrasts for advanced pharmacokinetic modelling. This is achieved by incorporating simultaneous multislice (SMS) imaging into a multi-contrast, segmented echo planar imaging (EPI) sequence to allow extended spatial coverage, which covers larger body regions without time penalty. Simultaneous acquisition of four slices was combined with segmented EPI for fast imaging with three gradient echo times in a preclinical perfusion study. Six female domestic pigs, German-landrace or hybrid-form, were scanned for 11 minutes respectively during administration of gadolinium-based contrast agent. Influences of reconstruction methods and training data were investigated. The separation into T1- and T2*-dependent signal contributions was achieved by fitting a standard analytical model to the acquired multi-echo data. The application of SMS yielded sufficient temporal resolution for the detection of the arterial input function in major vessels, while anatomical coverage allowed perfusion analysis of muscle tissue. The separation of the MR signal into T1- and T2*-dependent components allowed the correction of susceptibility related changes. We demonstrate a novel sequence for dynamic contrast-enhanced MRI that meets the requirements of temporal resolution (Δt < 1.5 s) and image quality. The incorporation of SMS into multi-contrast, segmented EPI can overcome existing limitations of dynamic contrast enhancement and dynamic susceptibility contrast methods, when applied separately. The new approach allows both techniques to be combined in a single acquisition with a large spatial coverage.
Double-contrast agent DCE-MRI in combination with the E2CXM yields the most reliable results and can be used in clinical routine. Magn Reson Med 79:3154-3162, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.