He replacement technology a b s t r a c tWe present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3 He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252 Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241 Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.
We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.
We propose a sparsity-promoting Bayesian algorithm capable of identifying radionuclide signatures from weak sources in the presence of a high radiation background. the proposed method is relevant to radiation identification for security applications. In such scenarios, the background typically consists of terrestrial, cosmic, and cosmogenic radiation that may cause false positive responses. We evaluate the new Bayesian approach using gamma-ray data and are able to identify weapons-grade plutonium, masked by naturally-occurring radioactive material (noRM), in a measurement time of a few seconds. We demonstrate this identification capability using organic scintillators (stilbene crystals and EJ-309 liquid scintillators), which do not provide direct, high-resolution, source spectroscopic information. Compared to the EJ-309 detector, the stilbene-based detector exhibits a lower identification error, on average, owing to its better energy resolution. organic scintillators are used within radiation portal monitors to detect gamma rays emitted from conveyances crossing ports of entry. the described method is therefore applicable to radiation portal monitors deployed in the field and could improve their threat discrimination capability by minimizing "nuisance" alarms produced either by noRMbearing materials found in shipped cargoes, such as ceramics and fertilizers, or radionuclides in recently treated nuclear medicine patients.The growing terrorism threat based on the use of special nuclear materials (SNMs), i.e., highly enriched uranium (HEU), weapons-grade plutonium (WGPu), or high-activity radiological sources has reinforced the need for improved population protection mechanisms. Nuclear security aims to deter and detect the smuggling of these materials across state borders. One major defense mechanism involves the installation of radiation portal monitors (RPMs) at border crossings. These RPMs typically consist of 3 He proportional counters embedded in polyethylene for neutron detection, and slabs of polyvinyl-toluene (PVT) scintillators for gamma-ray detection. Only a tiny fraction of the millions of vehicles and cargo containers entering a country like the United States are likely to be carrying radiological contraband. The International Atomic Energy Agency's Incident and Trafficking Database (ITDB) merely counts a few dozen reported successful interdictions of nuclear and radiological materials globally per year 1,2 . The ITDB provides only a partial picture of the number of smuggling attempts. The reported figures should be considered a lower bound of the number of successful interdictions, because they include only successful interdictions, voluntarily reported by the member states.Complicating matters, the radiological contraband might be well shielded. In 2017, the United Nations Conference on Trade and Development estimated the global container port throughput at over 750 million 20-foot equivalent units 3 . As a consequence, RPMs are limited in measurement time to minimize unnecessary impediments to the fl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.