Global acquisition of atmospheric wind profiles using a spaceborne direct-detection Doppler wind lidar is being accomplished following the launch of European Space Agency’s Aeolus mission. One key part of the instrument is a single-frequency, ultraviolet laser that emits nanosecond pulses into the atmosphere. High output energy and frequency stability ensure a sufficient signal-to-noise ratio of the backscatter return and an accurate determination of the Doppler frequency shift induced by the wind. This Letter discusses the design of the laser transmitter for the first Doppler wind lidar in space and its performance during the first year of the Aeolus mission, providing valuable insights for upcoming space lidar missions.
Abstract. Even just shortly after the successful launch of the European Space Agency satellite Aeolus in August 2018, it turned out that dark current signal anomalies of single pixels (so-called “hot pixels”) on the accumulation charge-coupled devices (ACCDs) of the Aeolus detectors detrimentally impact the quality of the aerosol and wind products, potentially leading to wind errors of up to several meters per second. This paper provides a detailed characterization of the hot pixels that occurred during the first 1.5 years in orbit. The hot pixels are classified according to their characteristics to discuss their impact on wind measurements. Furthermore, mitigation approaches for the wind retrieval are presented and potential root causes for hot pixel occurrence are discussed. The analysis of the dark current signal anomalies reveals a large variety of anomalies ranging from pixels with random telegraph signal (RTS)-like characteristics to pixels with sporadic shifts in the median dark current signal. Moreover, the results indicate that the number of hot pixels almost linearly increased during the observing period between 2 September 2018 and 20 May 2020 with 6 % of the ACCD pixels affected in total at the end of the period leading to 9.5 % at the end of the mission lifetime. This work introduces dedicated instrument calibration modes and ground processors, which allowed for a correction shortly after a hot pixel occurrence. The achieved performance with this approach avoids risky adjustments to the in-flight hardware operation. It is demonstrated that the success of the correction scheme varies depending on the characteristics of each hot pixel itself. With the herein presented categorization, it is shown that multi-level RTS pixels with high fluctuation are the biggest challenge for the hot pixel correction scheme. Despite a detailed analysis in this framework, no conclusion could be drawn about the root cause of the hot pixel issue.
The ALADIN Instrument is a Doppler Wind Lidar, which will be launched in 2007 aboard the ESA Core Explorer Aeolus Mission. The main purpose of this payload is the measurement of tropospheric wind profiles on a global scale. The concept is based on a solid-state Nd:YAG laser associated with a direct detection frequency receiver. Astrium-SAS is prime contractor for the development of ALADIN. This programme includes in particular the development of a Pre Development Model (PDM) for the critical parts of the instrument. This paper describes the flight instrument design and reviews the achievements of the PDM activities: this will cover in particular the development status of the engineering models ofthe CCD detectors, front-end units and spectrometers
Abstract. Already shortly after the successful launch of the European Space Agency satellite Aeolus in August 2018, it turned out that dark current signal anomalies of single pixels (so-called hot pixels) on the Accumulation-Charge-Coupled Devices (ACCDs) of the Aeolus detectors detrimentally impact the quality of the aerosol and wind products potentially leading to wind errors of up to 4 m/s. This paper provides a detailed characterization of the hot pixels which occurred during the first one and a half years in orbit. The hot pixels are classified according to their characteristics to discuss their impact on wind measurements. Furthermore, mitigation approaches for the wind retrieval are presented and potential root causes for the hot pixel occurrence are discussed. The analysis of the dark current signal anomalies reveals a large variety of anomalies ranging from pixels with Random Telegraph Signal (RTS)-like characteristics to pixels with sporadic shifts in the median dark current signal. Moreover, the results indicate that the number of hot pixels has almost linearly increased during the observing period between 2018-09-02 until 2020-05-20 with 6 % of the ACCD pixels affected in total at the end of the period leading to 9.5 % at the end of mission lifetime. This work introduces dedicated instrument calibration modes and ground processors which allowed for a correction shortly after a hot pixel occurrence. The achieved performance with this approach avoids risky adjustments to the inflight hardware operation. It is demonstrated that the success of the correction scheme varies depending on the characteristics of each hot pixel itself. With the herein presented categorization, it is shown that multi-level RTS pixels with high fluctuation are the biggest challenge for the hot pixel correction scheme. Despite a detailed analysis in this framework, no conclusion could be drawn about the root cause of the hot pixel issue.
<p>The European Space Agency, ESA deployed the first Doppler wind lidar in space within its Earth Explorer Mission Aeolus in August 2018. After the initial commissioning of the satellite and the single payload ALADIN, the mission has started to demonstrate the capability of Doppler lidar to measure wind from space. In order to provide the best Aeolus wind product possible, detailed monitoring of the instrument is crucial for analysis of system health, but also for the assessment of measurement performance and data product calibration. Within the last 1.2 years the different instrument modes to assess instrument and laser health, as well as the nominal wind processing indicated longterm instrument drifts. The laser beam profile has been monitored and showed an energy redistribution within the beam. The line of sight has slowly drifted, resulting in a change of incidence angle at spectrometer level. The impact of these observed drifts on the wind product are compensated on demand by updates of dedicated ground processing calibration files. This contribution will provide an overview about the Aeolus instrument modes and the observed stability that are needed to provide the Aeolus wind product. The current Aeolus performance has been assessed by various Numerical Weather Prediction centers. The positive outcome is represented by ECMWF&#8217;s decision to start using Aeolus data operationally on 9<sup>th</sup> January 2020.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.