From seashells to DNA, chirality is expressed at every level of biological structures. In self-assembled structures it may emerge cooperatively from chirality at the molecular scale. Amphiphilic molecules, for example, can form a variety of aggregates and mesophases that express the chirality of their constituent molecules at a supramolecular scale of micrometres. Quantitative prediction of the large-scale chirality based on that at the molecular scale remains a largely unsolved problem. Furthermore, experimental control over the expression of chirality at the supramolecular level is difficult to achieve: mixing of different enantiomers usually results in phase separation. Here we present an experimental and theoretical description of a system in which chirality can be varied continuously and controllably ('tuned') in micrometre-scale structures. We observe the formation of twisted ribbons consisting of bilayers of gemini surfactants (two surfactant molecules covalently linked at their charged head groups). We find that the degree of twist and the pitch of the ribbons can be tuned by the introduction of opposite-handed chiral counterions in various proportions. This degree of control might be of practical value; for example, in the use of the helical structures as templates for helical crystallization of macromolecules.
Programmed self-assembly of well-defined molecular building blocks enables the fabrication of precisely structured nanomaterials. In this work, we explore a new class of giant polymeric surfactants (Mn = (0.7-4.4) × 10(6) g/mol) with bottlebrush architecture and show that their persistent molecular shape leads to the formation of uniform aggregates in a predictable manner. Amphiphilic bottlebrush block copolymers containing polylactide (PLA) and poly(ethylene oxide) (PEO) side chains were synthesized by a grafting-from method, and their self-assembly in aqueous environment was studied by cryogenic transmission electron microscopy. The produced micelle structures with varying interfacial curvatures and core radii (19-55 nm) boasted rod-like hydrophilic PEO brushes protruding from the hydrophobic PLA cores normal to the interface. Highly uniform spherical micelles with low dispersities were obtained from bottlebrush amphiphiles with packing parameters of ∼0.3, estimated from the polymer structural data. Long cylindrical micelles and other nonspherical aggregates were observed for the first time for compositionally less asymmetric bottlebrush surfactants. Critical micelle concentration values of 1 nM, measured for PEO-rich bottlebrush amphiphiles, indicated an enhanced thermodynamic stability of the produced micelle aggregates. Shape-dependent assembly of bottlebrush surfactants allows for the rational fabrication of a range of micelle structures in narrow morphological windows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.