Synthetic single-helical conformations are quite common, but the formation of double helices based on recognition between the two constituent strands is relatively rare. Known examples include duplex formation through base-pair-specific hydrogen bonding and stacking, as found in nucleic acids and their analogues, and polypeptides composed of amino acids with alternating L and D configurations. Some synthetic polymers and self-assembled fibres have double-helical winding induced by van der Waals interactions. A third mode of non-covalent interaction, coordination of organic ligands to metal ions, can give rise to double, triple and quadruple helices, although in this case the assembly is driven by the coordination geometry of the metal and the structure of the ligands, rather than by direct inter-strand complementarity. Here we describe a family of oligomeric molecules with bent conformations, which exhibit dynamic exchange between single and double molecular helices in solution, through spiral sliding of the synthetic oligomer strands. The bent conformations leading to the helical shape of the molecules result from intramolecular hydrogen bonding within 2'-pyridyl-2-pyridinecarboxamide units, with extensive intermolecular aromatic stacking stabilizing the double-stranded helices that form through dimerization.
Metal-catalyzed reductive coupling has emerged as an alternative to the use of stoichiometric organometallic reagents in an increasingly diverse range of carbonyl and imine additions. In this review, the use of diene, allene, and enyne pronucleophiles in intermolecular carbonyl and imine reductive couplings are surveyed, along with related hydrogen autotransfer processes.
Whereas numerous asymmetric methods for formation of quaternary carbon stereocenters in cyclic systems have been documented, the construction of acyclic quaternary carbon stereocenters with control of absolute stereochemistry remains a formidable challenge. This review summarizes enantioselective methods for the construction of acyclic quaternary carbon stereocenters from achiral or chiral racemic reactants via transition metal catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.