In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the infinite d-regular tree. More recently Sly [8] (see also [1]) showed that this is optimal in the sense that if there is an FPRAS for the hard-core partition function on graphs of maximum degree d for activities larger than the critical activity on the infinite d-regular tree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. This in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.
We offer a new understanding of some aspects of practical SAT-solvers that are based on DPLL with unit-clause propagation, clause-learning, and restarts. We do so by analyzing a concrete algorithm which we claim is faithful to what practical solvers do. In particular, before making any new decision or restart, the solver repeatedly applies the unit-resolution rule until saturation, and leaves no component to the mercy of non-determinism except for some internal randomness. We prove the perhaps surprising fact that, although the solver is not explicitly designed for it, with high probability it ends up behaving as width-k resolution after no more than O(n 2k+2 ) conflicts and restarts, where n is the number of variables. In other words, width-k resolution can be thought of as O(n 2k+2 ) restarts of the unit-resolution rule with learning.
Partition functions, also known as homomorphism functions, form a rich family of graph invariants that contain combinatorial invariants such as the number of kcolourings or the number of independent sets of a graph and also the partition functions of certain "spin glass" models of statistical physics such as the Ising model.Building on earlier work by Dyer and Greenhill [9] and Bulatov and Grohe [6], we completely classify the computational complexity of partition functions. Our main result is a dichotomy theorem stating that every partition function is either computable in polynomial time or #P-complete. Partition functions are described by symmetric matrices with real entries, and we prove that it is decidable in polynomial time in terms of the matrix whether a given partition function is in polynomial time or #P-complete.While in general it is very complicated to give an explicit algebraic or combinatorial description of the tractable cases, for partition functions described by a Hadamard matrices -these turn out to be central in our proofs -we obtain a simple algebraic tractability criterion, which says that the tractable cases are those "representable" by a quadratic polynomial over the field F 2 .
In a seminal paper [12], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (equivalently, approximating the partition function of the hard-core model from statistical physics) on graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the infinite d-regular tree. More recently Sly [10] showed that this is optimal in the sense that if there is an FPRAS for the hard-core partition function on graphs of maximum degree d for activities larger than the critical activity on the infinite d-regular tree then NP = RP. In this paper, we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of the anti-ferromagnetic Ising model with arbitrary field on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. This in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [9] to the case of the anti-ferromagnetic Ising model with arbitrary field. By a standard correspondence, these results translate to arbitrary two-state anti-ferromagnetic spin systems with soft constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.