Both transcatheter heart valve prostheses performed well in the described valve-in-valve settings. Hydrodynamic results were in line with the International Organization for Standardization standards for all configurations. The observed differences indicate a necessity for preclinical valve-in-valve tests in addition to clinical long-term data about longevity.
Here we have developed a new technically feasible algorithm simulating important aspects of a novel interventional procedure prior to the actual procedure. This algorithm can be applied to virtually all patients requiring a novel interventional procedure to help identify risks and find optimal parameters for prosthesis selection and placement in order to maximize safety for the patient.
The results of this study suggest that a surgical bioprosthesis with a large inner diameter and internally mounted leaflets improves the heamodynamics and potentially the durability of a valve-in-valve combination. These results should give the attending physicians critical information to consider when deciding on a bioprosthesis for younger patients.
ViV implantation of a THV in a small RDV yielded satisfactory hydrodynamic results. In most cases, a high implantation position achieved lower MPG, higher EOA and a reduced risk of impaired THV leaflet function. Fluoroscopy images of the best functional ViV positions are presented as a blueprint for patient procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.