Abstract. We present a new method for computing an optimal deformation between two arbitrary surfaces embedded in Euclidean 3-dimensional space. Our main contribution is in building a norm on the space of surfaces via representation by currents of geometric measure theory. Currents are an appropriate choice for representations because they inherit natural transformation properties from differential forms. We impose a Hilbert space structure on currents, whose norm gives a convenient and practical way to define a matching functional. Using this Hilbert space norm, we also derive and implement a surface matching algorithm under the large deformation framework, guaranteeing that the optimal solution is a one-to-one regular map of the entire ambient space. We detail an implementation of this algorithm for triangular meshes and present results on 3D face and medical image data.
The proposed methodology utilizes the full resolution of the data, rather than relying on global descriptions such as area measurements. The application of this methodology to an elderly group indicated sex-related differences in the callosal shape and size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.