Friction drilling is a widely used process to produce bushings in sheet materials, which are processed further by thread forming to create a connection port. Previous studies focused on the process parameters and did not pay detailed attention to the material flow of the bushing. In order to describe the material behaviour during a friction drilling process realistically, a detailed material characterisation was carried out. Temperature, strain rate, and rolling direction dependent tensile tests were performed. The results were used to parametrise the Johnson–Cook hardening and failure model. With the material data, numerical models of the friction drilling were created using the finite element method in 3D as well as 2D, and the finite volume method in 3D. Furthermore, friction drilling tests were carried out and analysed. The experimental results were compared with the numerical findings to evaluate which modelling method could describe the friction drilling process best. Highest imaging quality to reality was shown by the finite volume method in comparison to the experiments regarding the material flow and the geometry of the bushing.
The growing demand for individualized products is becoming more and more significant and leads to a reduction in batch sizes. In particular, the production of multi-material components for lightweight design presents new challenges to the manufacturing process. This is evident when it comes to the production of individual parts, as today’s processes are characterized by high tool costs and manual operations. The described challenge can be overcome by a robot-based manufacturing cell allowing the use of a novel, modular process chain in which metal parts are mechanically pre-treated, subsequently completed by additive plastic application, and afterwards finalized in a machining step to achieve the required surface qualities and geometries. In order to realize the novel process chain, robot-based solutions for free-form metal sheet processing, increased interlayer bonding strength of plastic, and multi-material machining with integrated chip extraction have to be found. Therefore, this paper presents the first approach of a robot-guided surface structuring end-effector and a concept for a direct extraction hood, which is able to be adapted specifically to the movement of the robot and the part surface, so free-form surfaces can be machined. Based on this, first experimental studies for increasing the interlayer bonding strength of plastic were carried out using an extruder set up to applicate thermoplastics onto metal at high deposition rates. To define the positioning accuracy for a robot-guided structuring process, different point to point movements have been investigated.
Within the framework of the bilateral CORNET projects MeTexCom and MeTexCom2, new approaches were developed and tested to improve the adhesion strength of metal textile composites, with a focus on the targeted roughening of aluminum surfaces and the development of new acoustically insulating nonwovens. The metal textile composites were produced by melting thermoplastic components of the textile composites without a separately applied adhesive.For improved adhesion strength between metal and textile, roughness was generated on the metal surface by means of a novel arc treatment by an anodic polarized TIG process or a cw (continuous wave) fiber laser process. On the one hand, the goal was to produce uniformly rough, untercut surface structures in micro-and nanodimension by means of a highly dynamic arcing process. On the other hand, a similar approach was pursued with the cw laser method by using a single-mode as well as a multi-mode laser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.