We report a lung-on-a-chip array that mimics the pulmonary parenchymal environment, including the thin alveolar barrier and the three-dimensional cyclic strain induced by breathing movements. The micro-diaphragm used to stretch the alveolar barrier is inspired by the in vivo diaphragm, the main muscle responsible for inspiration. The design of this device aims not only at best reproducing the in vivo conditions found in the lung parenchyma but also at making the device robust and its handling easy. An innovative concept, based on the reversible bonding of the device, is presented that enables accurate control of the concentration of cells cultured on the membrane by easily accessing both sides of the membranes. The functionality of the alveolar barrier could be restored by co-culturing epithelial and endothelial cells that form tight monolayers on each side of a thin, porous and stretchable membrane. We showed that cyclic stretch significantly affects the permeability properties of epithelial cell layers. Furthermore, we also demonstrated that the strain influences the metabolic activity and the cytokine secretion of primary human pulmonary alveolar epithelial cells obtained from patients. These results demonstrate the potential of this device and confirm the importance of the mechanical strain induced by breathing in pulmonary research.
The lung alveolar region experiences remodeling during several acute and chronic lung diseases, as for instance idiopathic pulmonary fibrosis (IPF), a fatal disease, whose onset is correlated with repetitive microinjuries to the lung alveolar epithelium and abnormal alveolar wound repair. Although a high degree of mechanical stress (>20% linear strain) is thought to potentially induce IPF, the effect of lower, physiological levels of strain (5–12% linear strain) on IPF pathophysiology remains unknown. In this study, we examined the influence of mechanical strain on alveolar epithelial wound healing. For this purpose, we adopted the “organ-on-a-chip” approach, which provides the possibility of reproducing unique aspects of the in vivo cellular microenvironment, in particular its dynamic nature. Our results provide the first demonstration that a wound healing assay can be performed on a breathing lung-on-a-chip equipped with an ultra-thin elastic membrane. We cultured lung alveolar epithelial cells to confluence, the cells were starved for 24 h, and then wounded by scratching with a standard micropipette tip. Wound healing was assessed after 24 h under different concentrations of recombinant human hepatic growth factor (rhHGF) and the application of cyclic mechanical stretch. Physiological cyclic mechanical stretch (10% linear strain, 0.2 Hz) significantly impaired the alveolar epithelial wound healing process relative to culture in static conditions. This impairment could be partially ameliorated by administration of rhHGF. This proof-of-concept study provides a way to study of more complex interactions, such as a co-culture with fibroblasts, endothelial cells, or immune cells, as well as the study of wound healing at an air–liquid interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.