As one of the oldest shaping manufacturing processes, forging and especially hot forging is characterized by extreme loads on the tool. The thermal load in particular is able to cause constant changes in the hardness of the surface layer, which in turn has a decisive influence on the numerical estimation of wear. Thus, also during numerical wear, modeling hardness changes need to be taken into account. Within the scope of this paper, a new implementation of a numerical wear model is presented, which, in addition to dynamic hardness models for the base material, can also take into account the properties of a nitride wear protection layer as a function of the wear depth. After a functional representation, the new model is applied to the wear calculation of a multi-stage industrial hot forging process. The applicability of the new implementation is validated by the evaluation of the occurring hardness, wear depths and the locally associated removal of the wear protection layer. Consecutively, a tool life calculation module based on the calculated wear depth is implemented and demonstrated. In general, a good agreement of the results is achieved, making the model suitable for detailed 2D as well as large 3D Finite Element calculations.
Diffusion treatments offer possibilities to enhance the performance and the service lifetime of hot forging tools. In combination with coating after nitriding, the surface layer hardness can be further increased. Within the scope of this study, a surface layer hardness above 2,000 HV0.005 was determined for borided or DLC (diamond-like carbon) coated surface layers. An increased surface layer hardness improves the abrasive wear resistance of forging dies. Furthermore, the plastic deformation of thermally softened forging die areas can be reduced. Beside these desirable effects, the ductility of diffusion treated or coated near surface layers is reduced and thermomechanical cracks are promoted. Therefore, additional approaches were developed to improve the thermomechanical crack behaviour of forging dies. Patterned plasmanitriding by the use of coverages to prevent areas from nitrogen diffusion, new combination processes of plasmanitrocarburizing (PNC) followed by plasmanitriding (PN) and the innovative boriding were investigated on different abstraction levels. A system of several testing rigs was set up to enable the abstraction of the thermal shock conditions in different stages. The patterned nitriding, boriding and combination plasma process (PN + PNC) were evaluated in a series of industrial field tests to derive recommendations for suitable tool treatments.
According to the current state of the art, wear conditions of forging dies are assessed visually in the dismantled state, as there is no measuring procedure available for inline wear measurement of hot forging dies. This paper introduces a handling concept for automated loading and in-situ tool inspection for a hot forging process. Based on an industrial robot and quickchange systems, the process integration of hightemperature grippers and an endoscopic 3D-measurement sensor for the in-situ inspection of hot forging dies is carried out. By adapting the measuring method of fringe projection to an endoscopic design, the measuring system can be navigated into the difficult-to-access geometry of the die and take high-precision 3D-measurements inside. The ambient air heated by the forming process creates an inhomogeneous refractive index field around the measuring system and the hot die, so that the straight beam path required for optical measuring systems cannot be ensured. This can lead to strong deviations in the reconstructed point clouds and the functional geometries derived from them. By means of a compressed air actuator, the measuring system can be protected from the hot tool and dirt as well as the effect of inhomogeneous refractive index can be reduced. With this approach the in-situ wear measurement at highly stressed regions using the example of the mandrel radius and the flash radius will be demonstrated. These functional elements are of particular relevance, as the thermalstress is high and large material flow takes place. For the wear measurement, the functional elements of the tool are examined in detail by fitting geometrical features into the reconstructed point clouds and determining the deviations from a reference geometry. In addition, the measurement data is validated with the aid of a commercially available state-of-the-art measurement system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.