This paper presents experimental results of an in situ investigation of optical absorption of congruent lithium niobate during reducing (95% Ar + 5% H 2 ) and oxidizing (O 2 ) high-temperature treatments in the temperature range from 20 to 800 • C. The absorption spectra measured at in situ conditions at high temperatures in reducing/oxidizing atmospheres as well as the kinetics recorded at fixed wavelength during rapid replacement of gas atmospheres have been analysed. The origin of the changes in optical absorption caused by the redox treatments is discussed in terms of hydrogen and oxygen ion diffusion and the point defect structure of the material.
Cell morphology of filamentous microorganisms is highly interesting during cultivations as it is often linked to productivity and can be influenced by process conditions. Hence, the characterization of cell morphology is of major importance to improve the understanding of industrial processes with filamentous microorganisms. For this purpose, reliable and robust methods are necessary. In this study, pellet morphology and physiology of the rebeccamycin producing filamentous actinomycete Lentzea aerocolonigenes were investigated by microscopy and flow cytometry. Both methods were compared regarding their applicability. To achieve different morphologies, a cultivation with glass bead addition (Ø = 969 μm, 100 g L-1) was compared to an unsupplemented cultivation. This led to two different macro-morphologies. Furthermore, glass bead addition increased rebeccamycin titers after 10 days of cultivation (95 mg L-1 with glass beads, 38 mg L-1 without glass beads). Macro-morphology and viability were investigated through microscopy and flow cytometry. For viability assessment fluorescent staining was used additionally. Smaller, more regular pellets were found for glass bead addition. Pellet diameters resulting from microscopy followed by image analysis were 172 μm without and 106 μm with glass beads, diameters from flow cytometry were 170 and 100 μm, respectively. These results show excellent agreement of both methods, each considering several thousand pellets. Furthermore, the pellet viability obtained from both methods suggested an enhanced metabolic activity in glass bead treated pellets during the exponential production phase. However, total viability values differ for flow cytometry (0.32 without and 0.41 with glass beads) and confocal laser scanning microscopy of single stained pellet slices (life ratio in production phase of 0.10 without and 0.22 with glass beads), which is probably caused by the different numbers of investigated pellets. In confocal laser scanning microscopy only one pellet per sample could be investigated while flow
The actinomycete Lentzea aerocolonigenes produces the antitumor antibiotic rebeccamycin. In previous studies the rebeccamycin production was significantly increased by the addition of glass beads during cultivation in different diameters between 0.5 and 2 mm and the induced mechanical stress by the glass beads was proposed to be responsible for the increased production. Thus, this study was conducted to be a systematic investigation of different parameters for macroparticle addition, such as bead diameter, concentration, and density (glass and ceramic) as well as shaking frequency, for a better understanding of the particle‐induced stress on L. aerocolonigenes. The induced stress for optimal rebeccamycin production can be estimated by a combination of stress energy and stress frequency.
In addition, the macroparticle‐enhanced cultivation of L. aerocolonigenes was combined with soy lecithin addition to further increase the rebeccamycin concentration. With 100 g L−1 glass beads in a diameter of 969 µm and 5 g L−1 soy lecithin a concentration of 388 mg L−1 rebeccamycin was reached after 10 days of cultivation, which corresponds to the highest rebeccamycin concentrations achieved in shake flask cultivations of L. aerocolonigenes stated in literature so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.