Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1, a major switch in the control of canonical autophagy. In addition, knocking down coiled-coil myosin-like BCL2-interacting protein 1, the key-protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation.
The standardized Ginkgo biloba extract EGb 761 has well-described antioxidative activities and effects on different cytoprotective signaling pathways. Consequently, a potential use of EGb 761 in neurodegenerative diseases has been proposed. A common characteristic feature of a variety of such disorders is the pathologic formation of protein aggregates, suggesting a crucial role for protein homeostasis. In this study, we show that EGb 761 increased the catalytic activity of the proteasome and enhanced protein degradation in cultured cells. We further investigated this effect in a cellular model of Huntington's disease (HD) by employing cells expressing pathologic variants of a polyglutamine protein (polyQ protein). We show that EGb 761 affected these cells by (i) increasing proteasome activity and (ii) inducing a more efficient degradation of aggregation-prone proteins. These results demonstrate a novel activity of EGb 761 on protein aggregates by enhancing proteasomal protein degradation, suggesting a therapeutic use in neurodegenerative disorders with a disturbed protein homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.