Abstract. We show that the vacuum permeability µ0 and permittivity ǫ0 may originate from the magnetization and the polarization of continuously appearing and disappearing fermion pairs. We then show that if we simply model the propagation of the photon in vacuum as a series of transient captures within these ephemeral pairs, we can derive a finite photon velocity. Requiring that this velocity is equal to the speed of light constrains our model of vacuum. Within this approach, the propagation of a photon is a statistical process at scales much larger than the Planck scale. Therefore we expect its time of flight to fluctuate. We propose an experimental test of this prediction.
In very intense electromagnetic fields, the vacuum refractive index is expected to be modified due to nonlinear quantum electrodynamics (QED) properties. Several experimental tests using high intensity lasers have been proposed to observe electromagnetic nonlinearities in vacuum, such as the diffraction or the reflection of intense laser pulses. We propose a new approach which consists in observing the refraction, i.e. the rotation of the waveplanes of a probe laser pulse crossing a transverse vacuum index gradient. The latter is produced by the interaction of two very intense and ultra short laser pulses, used as pump pulses. At the maximum of the index gradient, the refraction angle of the probe pulse is estimated to be 0.2 × ( w 0 10µm ) −3 × I 1J picoradians, where I is the total energy of the two pump pulses and w0 is the minimum waist (fwhm) at the interaction area. Assuming the most intense laser pulses attainable by the LASERIX facility (I = 25 J, 30 fs fwhm duration, 800 nm central wavelength) and assuming a minimum waist of w = 10µm (fwhm) (corresponding to an intensity of the order of 10 21
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.