The mycobacterial ideR protein is a homologue of the diphtheria-toxin repressor DtxR. We have previously demonstrated that Mycobacterium tuberculosis ideR, like DtxR, represses transcription of Corynebacterium diphtheriae iron-regulated promoters in vivo and binds to C. diphtheriae operators in a metal-dependent manner in vitro. We show here that ideR mutants of M. smegmatis, constructed by allelic replacement, were defective in their ability to repress siderophore biosynthesis in the presence of iron. They were also more sensitive to hydrogen peroxide and had decreased levels of catalase/peroxidase (KatG) and manganese superoxide dismutase (Mn-SOD). This indicates that ideR is a negative regulator of siderophore production and is required for the response to superoxide- and hydrogen peroxide stress. We propose that ideR is the mycobacterial counterpart of the Escherichia coli Fur protein, i.e. It is a pleiotropic regulator that couples iron metabolism to the oxidative-stress response.
The mechanisms associated with resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to organophosphate insecticides in pome fruit orchards have been shown to depend on the area. Our objectives were to evaluate the susceptibility of Spanish codling moth populations to chlorpyrifos-ethyl, azinphos-methyl, and phosalone, and the activity of three enzymatic systems reported to be involved in resistance. Eleven field populations and a susceptible strain used as a reference were tested using a bioassay consisting in the topical application of a diagnostic concentration on postdiapausing larvae. The enzymatic activity of mixed function oxidases (MFO), glutathione transferases (GST), and esterases (EST) was measured in postdiapausing larvae and adults. A significant decrease in the efficacy of the organophosphates was observed for all field populations, although the decrease was smaller in the case of chlorpyrifos-ethyl. No differences between sexes were detected. In postdiapausing larvae, the activity of the three enzymatic systems was higher in all the field populations than in the susceptible population. The possible implication of EST in codling moth insecticide resistance is reported for the first time in European field populations. In adults, only MFO and GST were implicated. Codling moth resistance to organophosphates in Spanish populations must be taken into account in the implementation of antiresistance strategies.
The calcimimetic cinacalcet increases the sensitivity of the parathyroid calcium-sensing receptor to calcium and therefore should produce a decrease in the set point of the parathyroid hormone (PTH)-calcium curve. For investigation of this hypothesis, nine long-term hemodialysis patients with secondary hyperparathyroidism were given cinacalcet for 2 mo, the dosage was titrated per a protocol based on intact PTH and plasma calcium concentrations. Dialysis against low-and high-calcium (0.75 and 1.75 mM) dialysate was used to generate curves describing the relationship between PTH and calcium. Compared with precinacalcet levels, cinacalcet significantly reduced mean serum calcium, intact PTH and whole PTH (wPTH; all P Ͻ 0.001). The set points for PTH-calcium curves were significantly reduced, and both maximum and minimum levels of PTH (intact and whole) were significantly decreased. The calciummediated inhibition of PTH secretion was more marked after cinacalcet treatment. In addition, cinacalcet shifted the inverse sigmoidal curve of wPTH/non-wPTH ratio versus calcium to the left (i.e., less calcium was required to reduce the wPTH/non-wPTH ratio). In conclusion, cinacalcet increases the sensitivity of the parathyroids to calcium, causing a marked reduction in the set point of the PTH-calcium curve, in hemodialysis patients with secondary hyperparathyroidism.
In uremic patients, severe parathyroid hyperplasia is associated with reduced parathyroid calcium-sensing receptor (CaR) expression. Thus, in these patients, a high serum Ca concentration may be required to inhibit parathyroid hormone (PTH) secretion. This study compares the magnitude of reduction in CaR expression and the degree of the abnormality in Ca-regulated PTH release in vitro. A total of 50 glands from 23 hemodialysis patients with refractory hyperparathyroidism were studied. Tissue slices were incubated in vitro to evaluate (1) the PTH secretory output in a normal Ca concentration (1.25 mM) and (2) the PTH secretory response to high (1.5 mM) and low (0.6 mM) Ca concentration. Tissue aliquots were processed for determination of CaRmRNA expression. The results showed that, corrected for DNA, parathyroid tissue with lowest CaR expression secreted more PTH than that with relatively high CaR expression (146 ؎ 23 versus 60 ؎ 2 pg/g DNA; P < 0.01). Furthermore, glands with low CaR expression demonstrated a blunted PTH secretory response to both the inhibitory effect of high Ca and the stimulatory effect of low Ca. The study also showed that the larger the gland, the lower the CaRmRNA expression. Thus, large parathyroid glands produce a large amount of PTH not only as a result of the increased gland size but also because the parathyroid tissue secretory output is increased. These abnormalities in PTH regulation are related to low CaR expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.