We previously demonstrated that extracellular calcium regulates vitamin D receptor (VDR) expression by parathyroid cells. Since the calcimimetic R-568 potentiates the effects of calcium on the calcium-sensing receptor, it was hypothesized that administration of R-568 may result in increased VDR expression in parathyroid tissue. In vitro studies of the effect of R-568 on VDR mRNA and protein were conducted in cultures of whole rat parathyroid glands and human hyperplastic parathyroid glands. In vivo studies in Wistar rats examined the effect of R-568 and calcitriol alone and in combination. Incubation of rat parathyroid glands in vitro with R-568 (0.001-1 microM) resulted in a dose-dependent decrease in parathyroid hormone (PTH) secretion and an increase in VDR expression (mean +/- SE). Incubation in 1 mM calcium + 0.001 microM R-568 elicited an increase in VDR mRNA (306 +/- 46%) similar to the maximum increase detected with 1.5 mM calcium (330 +/- 42%). In vivo, VDR mRNA was increased after administration of R-568 (168 +/- 9%, P < 0.001 vs. control) or calcitriol (198 +/- 16%, P < 0.001 vs. control). Treatment with R-568 also increased VDR protein in normal rat parathyroid glands and in human parathyroid glands with diffuse, but not nodular, hyperplasia. In conclusion, the present study shows that the calcimimetic R-568 exerts a stimulatory effect on VDR expression in the parathyroid glands of study models and provides additional evidence for the use of calcimimetics in the treatment of secondary hyperparathyroidism.
Abstract. Low extracellular calcium (Ca) stimulates parathyroid hormone (PTH) secretion and also increases the renal synthesis of calcitriol (CTR), which is known to decrease PTH production. This study began with the hypothesis that the parathyroid cell response to CTR may be modulated by extracellular Ca concentration through an effect on parathyroid cell vitamin D receptor (VDR). In the present study, rat parathyroid glands were incubated in low (0.6 mM) and high (1.5 mM) Ca concentration. The parathyroid VDRmRNA was higher in 1.5 than 0.6 mM Ca. Furthermore, this effect was not observed in incubated slices of kidney cortex and medulla, tissues which also possess both Ca and vitamin D receptors. Experiments were also performed to evaluate the effect of Ca on VDR expression in vivo. Male Wistar rats received intraperitoneal injections of CaCl 2 or a single intramuscular injection of EDTA to obtain 6 h of hypercalcemic (ionized Ca, 1.4 to 1.6 mM) or hypocalcemic (ionized Ca, 0.85 to 0.95 mM) clamp; a third group of rats was used as control. A small dose of CTR was administered to hypercalcemic rats to match the serum CTR levels of hypocalcemic rats. Parathyroid gland VDRm-RNA and VDR protein were increased in hypercalcemic rats as compared with hypocalcemic rats. Increasing doses of CTR upregulated VDRmRNA and VDR only in hypercalcemic rats. Additional experiments showed that the decrease in VDR in hypocalcemic rats prevented the inhibitory effect of CTR on PTHmRNA. In conclusion, our study shows that extracellular Ca regulates VDR expression by parathyroid cells independently of CTR and that by this mechanism hypocalcemia may prevent the feedback of CTR on the parathyroids.The parathyroid cell increases parathyroid hormone (PTH) secretion in response to a decrease in the extracellular calcium (Ca) concentration. A cell membrane Ca sensor receptor enables these cells to respond to small changes in serum Ca concentration (1). PTH acts on its target organs, mainly kidney and bone, to increase the serum Ca to its normal level. Calcitriol (CTR), the production of which is stimulated by hypocalcemia and also by PTH, is another hormone that contributes to restoration of normocalcemia by stimulating intestinal absorption of Ca (2). Thus there are two different hormones, PTH and CTR, with a calcemic effect, and both share the commitment of preserving normocalcemia. The elevation of serum Ca feeds back on the parathyroid cell, inhibiting PTH secretion and synthesis (2); in addition, high CTR also inhibits PTH synthesis by acting on specific vitamin D receptors (VDR) (3). The inhibitory effect of CTR on parathyroid cells has been widely demonstrated to the point that CTR is used to reduce PTH levels in uremic patients with advanced hyperparathyroidism (4). However, it would not seem appropriate that CTR should inhibit PTH synthesis if hypocalcemia persists; such inhibition would counteract the function of the parathyroid cell, which is to restore normocalcemia. Furthermore, it would seem paradoxical that the parathyroid c...
The calcimimetic cinacalcet increases the sensitivity of the parathyroid calcium-sensing receptor to calcium and therefore should produce a decrease in the set point of the parathyroid hormone (PTH)-calcium curve. For investigation of this hypothesis, nine long-term hemodialysis patients with secondary hyperparathyroidism were given cinacalcet for 2 mo, the dosage was titrated per a protocol based on intact PTH and plasma calcium concentrations. Dialysis against low-and high-calcium (0.75 and 1.75 mM) dialysate was used to generate curves describing the relationship between PTH and calcium. Compared with precinacalcet levels, cinacalcet significantly reduced mean serum calcium, intact PTH and whole PTH (wPTH; all P Ͻ 0.001). The set points for PTH-calcium curves were significantly reduced, and both maximum and minimum levels of PTH (intact and whole) were significantly decreased. The calciummediated inhibition of PTH secretion was more marked after cinacalcet treatment. In addition, cinacalcet shifted the inverse sigmoidal curve of wPTH/non-wPTH ratio versus calcium to the left (i.e., less calcium was required to reduce the wPTH/non-wPTH ratio). In conclusion, cinacalcet increases the sensitivity of the parathyroids to calcium, causing a marked reduction in the set point of the PTH-calcium curve, in hemodialysis patients with secondary hyperparathyroidism.
Our findings suggest a high phosphate burden, as well as female gender, favor parathyroid cell proliferation and both may reduce the inhibition of parathyroid function by calcitriol.
In uremic patients, severe parathyroid hyperplasia is associated with reduced parathyroid calcium-sensing receptor (CaR) expression. Thus, in these patients, a high serum Ca concentration may be required to inhibit parathyroid hormone (PTH) secretion. This study compares the magnitude of reduction in CaR expression and the degree of the abnormality in Ca-regulated PTH release in vitro. A total of 50 glands from 23 hemodialysis patients with refractory hyperparathyroidism were studied. Tissue slices were incubated in vitro to evaluate (1) the PTH secretory output in a normal Ca concentration (1.25 mM) and (2) the PTH secretory response to high (1.5 mM) and low (0.6 mM) Ca concentration. Tissue aliquots were processed for determination of CaRmRNA expression. The results showed that, corrected for DNA, parathyroid tissue with lowest CaR expression secreted more PTH than that with relatively high CaR expression (146 ؎ 23 versus 60 ؎ 2 pg/g DNA; P < 0.01). Furthermore, glands with low CaR expression demonstrated a blunted PTH secretory response to both the inhibitory effect of high Ca and the stimulatory effect of low Ca. The study also showed that the larger the gland, the lower the CaRmRNA expression. Thus, large parathyroid glands produce a large amount of PTH not only as a result of the increased gland size but also because the parathyroid tissue secretory output is increased. These abnormalities in PTH regulation are related to low CaR expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.