Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection.
In this study, we investigated the ability of four clinical isolates of Mycobacterium tuberculosis representing a range of virulence for their capacity to grow in bone marrow-derived macrophages. The rate of growth of each of the isolates in macrophages reflected their known virulence, but the most virulent isolates strongly induced production of the cytokine tumor necrosis factor alpha. A key difference, however, was the degree of cell cytotoxicity observed with the more virulent strains after several days in culture. Staining of cell monolayers for DNA fragmentation indicative of apoptosis showed that this was minimal and only evident to any degree in macrophages infected with the most virulent strains. In contrast, electron microscopy revealed damage of macrophages consistent with cell necrosis. These results suggest that rapid intracellular growth rate and induction of necrotic cell death within host macrophages are virulence factors of M. tuberculosis in the early stages of bacterial infection. They further imply that infected cell apoptosis, regarded as a defense mechanism or cross-priming mechanism, plays a minimal role.
SUMMARY
There is increasing evidence that clinical isolates of Mycobacterium tuberculosis that belong to the W-Beijing genotype of newly emerging strains are often of very high virulence when tested in small animal models, including the mouse and guinea pig. In this report we provide further evidence to support this contention, and show that two W-Beijing strains are of very high virulence when introduced by low dose aerosol into out-bred guinea pigs. In addition to severe lung pathology, each of these infections was associated with large influxes of activated CD4 and CD8 T cells into the lungs. Large influxes of macrophages were also observed, but the fraction of these showing evidence of activation by Class-II expression was relatively low. A progressive increase in neutrophils was also seen, with highest levels accumulating in the lungs of the W-Beijing infected animals. In the case of these two infections mRNA levels for TH1 cytokines was elevated early, but these then declined, and were replaced by increasing levels of message encoding for Foxp3, IL-10, and TGFβ. These observations support the hypothesis that W-Beijing strains are potent inducers of regulatory T cells, and that this event may enhance survival and transmission of these bacilli.
A total of 173 Vibrio cholerae 0 1 isolates from the recent cholera epidemic in Colombia was analysed by the polymerase chain reaction (PCR) for the genes encoding the A subunit of cholera toxin (ctxA) and the zonula occludens toxin (zot), and by ribotyping. All isolates were positive for ctx A and zot, which was confirmed by hybridisation. Ribotyping with restriction endonuclease BgZI digestion of total DNA revealed three ribotypes: B5a comprising 165 (96.4%) isolates, and two new designated ribotypes B20 and B21a in six (3.5%) isolates and two (1.1Y0) isolates, respectively. These findings have significant public health implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.