This paper rigorously analyses preconditioners for the time-harmonic Maxwell equations with absorption, where the PDE is discretised using curl-conforming finite-element methods of fixed, arbitrary order and the preconditioner is constructed using Additive Schwarz domain decomposition methods. The theory developed here shows that if the absorption is large enough, and if the subdomain and coarse mesh diameters and overlap are chosen appropriately, then the classical two-level overlapping Additive Schwarz preconditioner (with PEC boundary conditions on the subdomains) performs optimally -in the sense that GMRES converges in a wavenumberindependent number of iterations -for the problem with absorption. An important feature of the theory is that it allows the coarse space to be built from low-order elements even if the PDE is discretised using high-order elements. It also shows that additive methods with minimal overlap can be robust. Numerical experiments are given that illustrate the theory and its dependence on various parameters. These experiments motivate some extensions of the preconditioners which have better robustness for problems with less absorption, including the propagative case. At the end of the paper we illustrate the performance of these on two substantial applications; the first (a problem with absorption arising from medical imaging) shows the empirical robustness of the preconditioner against heterogeneity, and the second (scattering by a COBRA cavity) shows good scalability of the preconditioner with up to 3,000 processors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.