Glyphosate-based herbicides (GBHs) are among the most used pesticides worldwide, presenting high potential for human exposure. Recently, a debate was raised on glyphosate risks to human health due to conflicting views over its potential carcinogenic and endocrine disruptive properties. Results from regulatory guideline studies, reports from Regulatory Agencies, and some literature studies point to a lack of endocrine disrupting properties of the active ingredient glyphosate. On the other hand, many in vivo and in vitro studies, using different experimental model systems, have demonstrated that GBHs can disrupt certain hormonal signaling pathways with impacts on the hypothalamic-pituitary-gonadal axis and other organ systems. Importantly, several studies showed that technical-grade glyphosate is less toxic than formulated GBHs, indicating that the mixture of the active ingredient and formulants can have cumulative effects on endocrine and reproductive endpoints, which requires special attention from Regulatory Agencies. In this mini-review, we discuss the controversies related to endocrine-disrupting properties of technical-grade glyphosate and GBHs emphasizing the reproductive system and its implications for human health.
A previous study has demonstrated exposure of Brazilian pregnant women to diisopentyl phthalate (DiPeP), which reduces fetal rat testosterone production in a dose-responsive manner. In this study, we examined gene expression of steroidogenic proteins in rat fetal testes and investigated the effects of in utero and lactational DiPeP exposure on male rat reproductive development and function. For the prenatal experiment, we orally exposed pregnant Wistar rats to DiPeP or di-n-butyl phthalate (reference phthalate) at 0, 125, 250, and 500 mg/kg/day from gestation day 14–18 and the fetal testis was evaluated for transcript expression of Star, Cyp11a1, Cyp17a1, Cyp19a1, Insl3, Ar, Esr1, Esr2, and Gper1 by real-time quantitative PCR (RT-qPCR). Diisopentyl phthalate lowered mRNA levels of key steroidogenic proteins, lending support to the previously reported reductions in fetal testosterone production. Diisopentyl phthalate also lowered fetal testis transcript levels of Insl3 and changed gene expression of some steroid hormones receptors. For the postnatal experiment, pregnant rats were exposed orally to vehicle (canola oil) and 4 DiPeP doses (1, 10, 100, and 300 mg/kg/day) between gestation day 10 and postnatal day 21. Diisopentyl phthalate induced a range of reproductive and antiandrogenic effects that are typical of the rat phthalate syndrome, including reduced anogenital distance at the highest dose, reduced weight of seminal vesicles at 10 mg/kg/day and above, and testicular morphological and functional changes. Signs of fetal toxicity were observed at the highest dose. Together, our results indicate that DiPeP, a compound relevant to the human exposure scenario, is one of the most active antiandrogenic phthalates.
Mild analgesics have been associated with antiandrogenic effects, but there are no such studies on dipyrone, despite its high prevalence of use in many countries. We examined the production of steroid hormones in human H295R cells after exposure to dipyrone and two metabolites, 4-Methylaminoantipyrine (MAA) and 4-Aminoantipyrine (AA), as well as fetal testicular testosterone production in rats following maternal dipyrone exposure. Androgen agonistic/antagonistic effects were examined in vitro for dipyrone and its metabolites in the Yeast Androgen Screen (YAS) assay and in vivo for dipyrone through the Hershberger assay. In vitro we tested dipyrone, MAA, and AA (0.1-1000 μM) while in vivo we used dipyrone (50, 100, 200 mg/kg/day). In the H295R assay, dipyrone, MAA and AA reduced the production of androgens and corticosteroids. Testosterone was reduced at concentrations 4-13 times higher than the maximum plasma concentrations reported in humans for MAA and AA. No effects were observed in the fetal testosterone production assay. In the YAS and Hershberger assays, no androgen agonistic/antagonistic activities were observed. These results indicate that dipyrone and its metabolites do not interact with the androgen receptor, but have the potential to inhibit steroidogenesis, however only at concentrations that are not relevant under normal medical use.
Phthalates are found in different plastic materials, such as packaging, toys and medical devices. Some of these compounds are endocrine disruptors, comprising substances that are able to induce multiple hormonal disturbances and downstream developmental effects, including the disruption of androgen-dependent differentiation of the male reproductive tract and changes in pathways that regulate hormone-dependent behaviours. In a previous study, metabolites of diisopentyl phthalate (DiPeP), a potent anti-androgenic phthalate, were found in the urine of Brazilian pregnant women.Therefore, the present study aimed to evaluate the effects of DiPeP exposure during critical developmental periods on behaviours controlled by sex hormones in rats.Pregnant Wistar rats were treated with DiPeP (1, 10 or 100 mg kg day -1 ) or canola oil by oral gavage between gestational day 10 and post-natal day (PND) 21. Male offspring were tested in a behavioural battery, including the elevated plus maze task, play behaviour, partner preference and sexual behaviour. After the behavioural tests, the hypothalamus and pituitary of these animals were removed on PND 60-65 and PND 145-160 to quantify gene expression for aromatase, androgen receptor (Ar) and oestrogen receptors α (Esr1) and β (Esr2). Male rats exposed to 1 and 10 mg kg day -1 DiPeP displayed no preference for the female stimulus rat in the partner preference test and 1 mg kg day -1 DiPeP rats also showed a significant increase in mount and penetration latencies when mated with receptive females. A decrease in pituitary Esr1 expression was observed in all DiPeP treated groups regardless of age. A reduction in hypothalamic Esr1 expression in rats exposed to 10 mg kg day -1 DiPeP was also observed. No significant changes were found with respect to Ar, Esr2 and aromatase expression in the hypothalamus. These results suggest that DiPeP exposure during critical windows of development in rats may induce changes in behaviours related to mating and the sexual motivation of males. K E Y W O R D S anti-androgens, behaviour, diisoamyl phthalate, male offspring rats, phthalates S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Neubert da Silva G, Zauer Curi T, Lima Tolouei SE, et al. Effects of diisopentyl phthalate exposure during gestation and lactation on hormonedependent behaviours and hormone receptor expression in rats. J Neuroendocrinol. 2019;31:e12816. https ://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.