Traditional search tasks have taught us much about vision and attention. Recently, several groups have begun to use multiple-target search to explore more complex and temporally extended "foraging" behaviour. Many of these new foraging tasks, however, maintain the simplified 2D displays and response demands associated with traditional, single-target visual search. In this respect, they may fail to capture important aspects of real-world search or foraging behaviour. In the current paper, we present a serious game for mobile platforms, developed in Unity3D, in which human participants play the role of an animal foraging for food in a simulated 3D environment. Game settings can be adjusted, so that, for example, custom target and distractor items can be uploaded, and task parameters, such as the number of target categories or target/distractor ratio are all easy to modify. We are also making the Unity3D project available, so that further modifications can also be made. We demonstrate how the app can be used to address specific research questions by conducting two human foraging experiments. Our results indicate that in this 3D environment, a standard feature/conjunction manipulation does not lead to a reduction in foraging runs, as it is known to do in simple, 2D foraging tasks.
Curiosity is considered an important aspect of human life, but understanding the circumstances that cause a person to become curious poses a challenge for research. This paper proposes video games as a stimulus for the experimental study of curiosity. For this purpose, we conducted a survey with the goal of assessing what video game titles and genres could be considered reliable instruments for invoking curiosity. To involve different types of curiosity, we included the Five-Dimensional Curiosity Scale (5DC) questionnaire. The survey was completed by 113 participants, and resulted in 301 game suggestions that warrant further analysis. Exploration and Social Simulation games in particular were found to rank high in triggering curiosity. To explain this result, we present a first analysis of potential game patterns that help trigger curiosity within these genres.
Traditional search tasks have taught us much about vision and attention. Recently, several groups have begun to use multiple-target search to explore more complex and temporally extended “foraging” behaviour. Many of these new foraging tasks, however, maintain the simplified 2D displays and response demands associated with traditional, single-target visual search. In this respect, they may fail to capture important aspects of real-world search or foraging behaviour. In the current paper, we present a serious game for mobile platforms in which human participants play the role of an animal foraging for food in a simulated 3D environment. Game settings can be adjusted, so that, for example, custom target and distractor items can be uploaded, and task parameters, such as the number of target categories or target/distractor ratio are all easy to modify. We demonstrate how the app can be used to address specific research questions by conducting two human foraging experiments. Our results indicate that in this 3D environment, a standard feature/conjunction manipulation does not lead to a reduction in foraging runs, as it is known to do in simple, 2D foraging tasks. Differences in foraging behaviour are discussed in terms of environment structure, task demands and attentional constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.