Biological interactions occurring at the bone-biomaterial interface are critical for long-term clinical success. Bio-Oss is a deproteinized, sterilized bovine bone that has been extensively used in bone regeneration procedures. The aim of the present study was a comparative light, scanning, and electron microscopy evaluation of the interface between Bio-Oss and bone in specimens retrieved after sinus augmentation procedures. Under light microscopy, most of the particles were surrounded by newly formed bone, while in a few cases, at the interface of some particles it was possible to observe marrow spaces and biological fluids. Under scanning electron microscopy, in most cases, the particle perimeter appeared lined by bone that was tightly adherent to the biomaterial surface. Transmission electron microscopy showed that the bone tissue around the biomaterial showed all the phases of the bone healing process. In some areas, randomly organized collagen fibers were present, while in other areas, newly formed compact bone was present. In the first bone lamella collagen fibers contacting the Bio-Oss surface were oriented at 243.73 +/- 7.12 degrees (mean +/- SD), while in the rest of the lamella they were oriented at 288.05 +/- 4.86 degrees (mean +/- SD) with a statistically significant difference of 44.32 degrees (p < 0.001). In the same areas the intensity of gray value was 172.56 +/- 18.15 (mean +/- SD) near the biomaterial surface and 158.71 +/- 21.95 (mean +/- SD) in the other part of the lamella with an unstatistically significant difference of 13.79 (p = 0.071). At the bone-biomaterial interface there was also an electron-dense layer similar to cement lines. This layer had a variable morphology being, in some areas, a thin line, and in other areas, a thick irregular band. The analyses showed that Bio-Oss particles do not interfere with the normal osseous healing process after sinus lift procedures and promote new bone formation. In conclusion, this study serves as a better understanding of the morphologic characteristics of Bio-Oss and its interaction with the surrounding tissues.
According to our knowledge, this is the first study presenting data on TEM of a porcine bone-derived biomaterial used in sinus augmentation procedures in humans. Our findings show that this is a biocompatible biomaterial that can be used for maxillary sinus augmentation procedures without interfering with the normal reparative bone processes.
Equine bone appeared to be biocompatible and to be associated with new vessel ingrowth. Within the limits of the small sample size, the present study indicated that equine bone could be used in mandibular ridge augmentations.
Recent studies have shown that mesenchymal stem cells obtained from periodontal ligament (PDL-MSCs) are multipotent cells that have similar features of the bone marrow and dental pulp MSCs and are capable of proliferating and producing different types of tissue such as bone and tooth associated-tissues. Human PDL-MSCs expanded ex vivo were induced to osteogenesis, seeded in three-dimensional biocompatible scaffolds (fibrin sponge, bovine-derived substitutes) and examined using light, scanning and transmission electron microscopy. Morphological observations showed extensive growth of cellular biomass partially covering the scaffolds after 4 weeks of incubation in mineralization medium. These findings indicate that periodontal ligament can be an easily and efficient autologous source of stem cells with a high expansion capacity and ability to differentiate in osteogenic cells that can colonize and grow connected to bio-compatible scaffold. It can be suggested that the use of PDL-MSCs for generating graft biomaterials is advantageous for bone tissue engineering in regenerative dentistry.
A close spatial correlation has been described between the roughness of intraoral materials and the rate of bacterial colonisation. The aim of the present study in man was to conduct a comparative immunohistochemical evaluation of the inflammatory infiltrate, microvessel density, the nitric oxide synthases 1 and 3 and the vascular endothelial growth factor expression, the proliferative activity, and the B and T lymphocyte and histiocyte positivity in the peri-implant soft tissues around machined and acid-etched titanium healing caps. Ten patients participated in this study. The patients were enrolled consecutively. All patients received dental implants left to heal in a non-submerged mode. Healing caps were inserted in all implants. Half of the implants were supplied randomly with machined caps of titanium (control), while the other half were provided randomly with acid-etched titanium caps (test). After a 6-month healing period, a gingival biopsy was performed with a circular scalpel around the healing caps of both groups. The inflammatory infiltrate was mostly present in test specimens. Their extension was much larger than that of the control samples. A higher number of T and B lymphocytes were observed in test specimens. Higher values of microvessel density and a higher expression of vascular endothelial growth factor intensity were observed in the test samples. Furthermore, the Ki-67, NOS1 and NOS3 expression was significantly higher in the test specimens. All these results showed that the tissues around test healing caps underwent a higher rate of restorative processes, most probably correlated to the higher inflammation processes observed in these tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.