Adjuvants are components of vaccine that enhance the specific immune response against co-inoculated antigens. Recently, we reported the characterization of a synthetic sulfolipid named Sulfavant A ( 1 ) as a promising candidate of a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. Here, we report an improved synthesis of the sulfolipid scaffold, as well as the preparation of two analogs named Sulfavant-S ( 2 ) and Sulfavant-R ( 3 ) with enhanced property to modulate master immune targets such as human dendritic cells (DCs). According to the present approach, synthesis of 1 is reduced from 14 to 11 steps with nearly triplication of the overall yield (11%). The new members 2 and 3 elicit DC maturation at a concentration of 10 nM, which is 1000 times more potent than the parent molecule 1 . Analysis of dynamic light scattering indicates self-assembly of Sulfavants and formation of colloidal particles with a small hydrodynamic radius (50 nm) for the epimers 2 and 3 and a larger radius (150 nm) for 1 . The colloidal aggregates are responsible for the bell-shaped dose–response curve of these products. We conclude that the particle size also affects the equilibrium with free monomers, thus determining the effective concentration of the sulfolipid molecule at the cellular targets and the different immunological efficacy of 1–3 . Sulfavants ( 1–3 ) do not show in vitro cytotoxicity at concentrations 10 5 higher than the dose that triggers maximal immune response, thus predicting a low level of toxicological risk in their formulation in vaccines.
Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis.
Objective The immune response arises from a fine balance of mechanisms that provide for surveillance, tolerance, and elimination of dangers. Sulfavant A (SULF A) is a sulfolipid with a promising adjuvant activity. Here we studied the mechanism of action of SULF A and addressed the identification of its molecular target in human dendritic cells (hDCs). Methods Adjuvant effect and immunological response to SULF A were assessed on DCs derived from human donors. In addition to testing various reporter cells, target identification and downstream signalling was supported by a reverse pharmacology approach based on antibody blocking and gene silencing, crosstalk with TLR pathways, use of human allogeneic mixed lymphocyte reaction. Results SULF A binds to the Triggering Receptor Expressed on Myeloid cells-2 (TREM2) and initiates an unconventional maturation of hDCs leading to enhanced migration activity and up-regulation of MHC and co-stimulatory molecules without release of conventional cytokines. This response involves the SYK-NFAT axis and is compromised by blockade or gene silencing of TREM2. Activation by SULF A preserved the DC functions to excite the allogeneic T cell response, and increased interleukin-10 release after lipopolysaccharide stimulation. Conclusion SULF A is the first synthetic small molecule that binds to TREM2. The receptor engagement drives differentiation of an unprecedented DC phenotype (homeDCs) that contributes to immune homeostasis without compromising lymphocyte activation and immunogenic response. This mechanism fully supports the adjuvant and immunoregulatory activity of SULF A. We also propose that the biological properties of SULF A can be of interest in various physiopathological mechanisms and therapies involving TREM2.
A semisynthetic approach to novel lipid A derivatives from Escherichia coli (E. coli) lipid A is reported. This methodology stands as an alternative to common approaches based exclusively on either total synthesis or extraction from bacterial sources. It relies upon the purification of the lipid A fraction from fed-batch fermentation of E. coli, followed by its structural modification through tailored, site-selective chemical reactions. In particular, modification of the lipid pattern and functionalization of the phosphate group as well as of the sole primary hydroxyl group were accomplished, highlighting the unusual reactivity of the molecule. Preliminary investigations of the immunostimulating activity of the new semisynthetic lipid A derivatives show that some of them stand out as promising, new immunoadjuvant candidates.
Colwellia psychrerythraea 34H is a Gram-negative cold-adapted microorganism that adopts many strategies to cope with the limitations associated with the low temperatures of its habitat. In this study, we report the complete characterization of the lipid A moiety from the lipopolysaccharide of Colwellia. Lipid A and its partially deacylated derivative were completely characterized by high-resolution mass spectrometry, NMR spectroscopy, and chemical analysis. An unusual structure with a 3-hydroxy unsaturated tetradecenoic acid as a component of the primary acylation pattern was identified. In addition, the presence of a partially acylated phosphoglycerol moiety on the secondary acylation site at the 3-position of the reducing 2-amino-2-deoxyglucopyranose unit caused tremendous natural heterogeneity in the structure of lipid A. Biological-activity assays indicated that C. psychrerythraea 34H lipid A did not show an agonistic or antagonistic effect upon testing in human macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.