In this paper, density functional theory calculations of nuclear magnetic resonance (NMR) chemical shifts for l-quebrachitol isomer, previously studied in our group, are reported with the aim of investigating in more detail the water solvent effect on the prediction of H NMR spectra. In order to include explicit water molecules, 20 water-l-quebrachitol configurations obtained from Monte Carlo simulation were selected to perform geometry optimizations using the effective fragment potential method encompassing 60 water molecules around the solute. The solvated solute optimized geometries were then used in B3LYP/6-311+G(2d,p) NMR calculations with PCM-water. The inclusion of explicit solvent in the B3LYP NMR calculations resulted in large changes in theH NMR profiles. We found a remarkable improvement in the agreement with experimental NMR profiles when the explicit hydrated l-quebrachitol structure is used in B3LYP H NMR calculations, yielding a mean absolute error (MAE) of only 0.07 ppm, much lower than reported previously for the gas phase optimized structure (MAE = 0.11 ppm). In addition, a very improved match between theoretical and experimentalH NMR spectrum measured in DO was achieved with the new hydrated optimized l-quebrachitol structure, showing that a fine-tuning of the theoretical NMR spectra can be accomplished once solvent effects are properly considered.
This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.
In this work the neutral or spontaneous hydrolysis of paraoxon, one of the most popular organophosphate pesticides, in aqueous solution was investigated at the DFT and MP2 levels of theory, using a combination of local solvation of the phosphoryl group with explicit water molecules, and treating the long range solvent effects using continuum solvation model. In contrast to the alkaline hydrolysis, the neutral hydrolysis takes place in two steps, through an A + D mechanism, with formation of a pentacoordinate phosphorane intermediate. The reaction has activation free energies of 31.8 and 1.9 kcal mol for the first and second steps, respectively, and has an overall reaction free energy of -9.3 kcal mol, computed at the MP2/6-311++G(2d,2p)//B3LYP/6-31+G(d) level of theory. The reaction proceeds through a sequence of proton transfer processes from the attacking water molecule and ends with the protonation of the nitrophenolate leaving group. Explicit description of the local solvating water molecules is essential to describe the proton transfer processes along the reaction coordinate and to stabilize the pentacoordinate intermediate formed. The neutral hydrolysis is very slow and has an overall rate constant of 3.05 × 10 s, computed at the MP2/6-311++G(2d,2p)//B3LYP/6-31+G(d) level of theory. This result, in conjunction with the sensitivity of the rate constant to the experimental conditions, indicates that the hydrolysis of paraoxon in aqueous solution can be even slower than predicted experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.