The mercury rejected in the water system, from mining operations and lixiviation of soils after deforestation, is considered to be the main contributors to the contamination of the ecosystem in the Amazon Basin. The objectives of the present study were to examine cytogenetic functions in peripheral lymphocytes within a population living on the banks of the Tapajós River with respect to methylmercury (MeHg) contamination, using hair mercury as a biological indicator of exposure. Our investigation shows a clear relation between methylmercury contamination and cytogenetic damage in lymphocytes at levels well below 50 micrograms/gram, the level at which initial clinical signs and symptoms of mercury poisoning occur. The first apparent biological effect with increasing MeHg hair level was the impairment of lymphocyte proliferation measured as mitotic index (MI). The relation between mercury concentration in hair and MI suggests that this parameter, an indicator of changes in lymphocytes and their ability to respond to culture conditions, may be an early marker of cytotoxicity and genotoxicity in humans and should be taken into account in the preliminary evaluation of the risks to populations exposed in vivo. This is the first report showing clear cytotoxic effects of long-term exposure to MeHg. Although the results strongly suggest that, under the conditions examined here, MeHg is both a spindle poison and a clastogen, the biological significance of these observations are as yet unknown. A long-term follow-up of these subjects should be undertaken.
Artesunate is one of the main antimalarial drugs used in several countries. It is a semisynthetic compound derived from artemisinin, a substance extracted from the Chinese plant, Artemisia annua L. Despite the widespread use of artesunate as an antimalarial drug, there is a lack of data regarding its genotoxic effects in human lymphocytes. Therefore, in this study, we used the comet assay and micronucleus test to evaluate the possible genotoxic effects of artesunate in cultured human lymphocytes. In addition, cell death by necrosis and apoptosis was also assessed. Cells exposed to different concentrations of artesunate showed a significant concentration-dependent increase (P < 0.05) in DNA damage index and micronuclei frequency. A significant increase in the frequency of apoptotic and necrotic cells was also observed. Our results showed that artesunate is a genotoxic and cytotoxic compound in cultured human lymphocytes.
There is considerable evidence indicating an increase in neurodegenerative disorders in industrialized countries. The clinical symptoms and the possible mutagenic effects produced by acute poisoning and by chronic exposure to metals are of major interest. This study is a review of the data found concerning the genotoxic potential of three metals: aluminum (Al), iron (Fe) and manganese (Mn), with emphasis on their action on human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.