This paper presents a non-prioritized belief change operator, designed specifically for incorporating new information from many heterogeneous sources in an uncertain environment. We take into account that sources may be untrustworthy and provide a principled method for dealing with the reception of contradictory information. We specify a novel Data-Oriented Belief Revision Operator, that uses a trust model, subjective logic, and a preference-based argumentation framework to evaluate novel information and change the agent's belief set accordingly. We apply this belief change operator in a collaborative traffic scenario, where we show that (1) some form of trust-based non-prioritized belief change operator is necessary, and (2) in a direct comparison between our operator and a previous proposition, our operator performs at least as well in all scenarios, and significantly better in some.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.