Although fructose consumption has dramatically increased and is suspected to be causally linked to metabolic abnormalities, the mechanisms involved are still only partially understood. We discuss the available data and investigate the effects of dietary fructose on risk factors associated with metabolic disorders. The evidence suggests that fructose may be a predisposing cause in the development of insulin resistance in association with the induction of hypertriglyceridemia. Experiments in animals have shown this relation when they are fed diets very high in fructose or sucrose, and human studies also show this relation, although with conflicting results due to the heterogeneity of the studies. The link between increased fructose consumption and increases in uric acid also has been confirmed as a potential risk factor for metabolic syndrome, and insulin resistance/hyperinsulinemia may be causally related to the development of hypertension. Collectively, these results suggest a link between high fructose intake and insulin resistance, although future studies must be of reasonable duration, use defined populations, and improve comparisons regarding the effects of relevant doses of nutrients on specific endpoints to fully understand the effect of fructose intake in the absence of potential confounding factors.
Epidemiologic and experimental data suggest that excess iron may contribute to the development of cardiovascular diseases (CVD). Because increased LDL cholesterol, decreased HDL cholesterol and alteration of systolic blood pressure (SBP) have all been implicated as risk factors for atherosclerosis and related CVD, the present study was designed to determine whether excess iron alters serum lipids and SBP in control and hypercholesterolemic rats. Female Fischer rats were divided into four groups. The control group (C) was fed the control diet, the CI group was fed the control diet and given iron dextran injections, the hypercholesterolemic group (H) was fed a 1 g/100 g cholesterol diet, and the HI group was fed the cholesterol diet and given iron dextran injections. The rats were fed the diets for 8 wk and iron dextran injections were given during wk 6 at doses of 10 mg/d for 5 d. Excess iron reduced (P < 0.01) plasma total cholesterol in rats fed the cholesterol diet (5.31 +/- 0.83 and 3.17 +/- 0.31 mmol/L for H and HI, respectively). Excess iron also resulted in a redistribution of cholesterol among the various lipoprotein fractions, with an increase (P < 0.01) in HDL cholesterol (0.56 +/- 0.12 and 0.85 +/- 0.16 mmol/L for H and HI, respectively) and a decrease (P < 0.01) in LDL cholesterol (4.49 +/- 0.77 and 2.09 +/- 0.26 mmol/L for H and HI, respectively). This redistribution also occurred in the rats fed the control diet. The treatments did not affect SBP or heart rate. The high cholesterol diet affected iron homeostasis; group H had lower transferrin saturation than group C (P < 0.01); group HI had a lower serum iron concentration than group CI but did not differ from group H (P < 0.05). Therefore, we conclude that if iron has any effect on CVD, it is not through its influence on serum lipids and blood pressure.
We investigated cardiac hypertrophy elicited by rosiglitazone treatment at the level of protein synthesis/degradation, mTOR, MAPK and AMPK signalling pathways, cardiac function and aspects of carbohydrate/lipid metabolism. Hearts of rats treated or not with rosiglitazone (15 mg/kg day) for 21 days were evaluated for gene expression, protein synthesis, proteasome and calpain activities, signalling pathways, and function by echocardiography. Rosiglitazone induced eccentric heart hypertrophy associated with increased expression of ANP, BNP, collagen I and III and fibronectin, reduced heart rate and increased stroke volume. Rosiglitazone robustly increased heart glycogen content ( approximately 400%), an effect associated with increases in glycogenin and UDPG-PPL mRNA levels and glucose uptake, and a reduction in glycogen phosphorylase expression and activity. Cardiac triglyceride content, lipoprotein lipase activity and mRNA levels of enzymes involved in fatty acid oxidation were also reduced by the agonist. Rosiglitazone-induced cardiac hypertrophy was associated with an increase in myofibrillar protein content and turnover (increased synthesis and an enhancement of calpain-mediated myofibrillar degradation). In contrast, 26S beta5 chymotryptic proteasome activity and mRNA levels of 20S beta2 and beta5 and 19S RPN 2 proteasome subunits along with the ubiquitin ligases atrogin and CHIP were all reduced by rosiglitazone. These morphological and biochemical changes were associated with marked activation of the key growth-promoting mTOR signalling pathway, whose pharmacological inhibition with rapamycin completely blocked cardiac hypertrophy induced by rosiglitazone. The study demonstrates that both arms of protein balance are involved in rosiglitazone-induced cardiac hypertrophy, and establishes the mTOR pathway as a novel important mediator therein.
The present work reports the effect of aubergine extract on serum and hepatic cholesterol and triglycerides levels in adult rats. Fisher rats were divided into three groups: the first one received a normolipidic diet and water , serving as a control; the other two received a hypercholesterolaemic diet with 30% vegetable oil and 1% cholesterol, one of these being given water while the other was given an aubergine extract. After 28 days the animals were sacrificed and serum and hepatic cholesterol and triglycerides levels were assessed. The obtained results indicated that under the experimental conditions employed, the aubergine extract increased serum and decreased hepatic cholesterol and had little or no effect on both serum and hepatic triglycerides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.