In this work, a hybrid analytical-numerical study was performed in cooling of rectangular rods made from SAE 4150 alloy steel (0.50% carbon, 0.85% chrome, 0.23% molybdenum, and 0.30% silicon). The analysis can be represented by the solution of transient diffusive problems in rectangular cylinders with variable thermo-physical properties in its domain under the boundary conditions of first kind (Dirichlet condition) and uniform initial condition. The diffusion equation was linearized through the Kirchhoff Transformation on the temperature potential to make the analytical treatment easier. The Generalized Integral Transform Technique (GITT) was applied on the diffusion equation in the domain in order to determine the temperature distribution. The physical parameters of interest were determined for several aspect ratios and compared with the results obtained through numerical simulations using the commercial software ANSYS/FluentTM15.
This work shows the calculation of heat transfer parameters for slug flow in the thermal entrance region of elliptical section tubes submitted to a second kind boundary condition. The main difficulty in the application of the boundary conditions in problems with this kind of geometry has been removed by using a suitable coordinate change. The generalized integral transform technique (GITT) has been used to obtain the solution of the energy equation. The mixture temperature and the local and average Nusselt numbers have been calculated for several aspect ratios and the results have been compared with those found in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.