In this research, a heat pipe with grooves was experimentally analyzed for the application in thermal management of electronic packaging. The heat pipe was produced by a copper tube with an outer diameter of 9.45 mm, length of 205 mm, and capillary structure composed by axial grooves with average diameter of 220 μm. The grooves were manufactured using wire electrical discharge machining (wire-EDM). The working fluid used was de-ionized water. The condenser was cooled by air forced convection and the evaporator was heated using an electrical resistor. This heat pipe was tested horizontally to increasing heat loads varying from 5 to 15 W. The experimental results showed that the heat pipe worked successfully.
In this paper, an experimental investigation was performed of the thermal performance of different working fluids in thermosyphons that can be used in thermal control of electronic equipment. The working fluids were considered acetone, water, ethanol, and methanol. The thermosyphon are manufactured of copper with an outer diameter of 9.45 mm, an inner diameter of 7.75 mm, a total length of 200 mm, whereas an evaporator of 80 mm length, an adiabatic region of 20 mm in length and a condenser of 100 mm in length. They were loaded with 1.39 ml of the working fluid, corresponding to a filling ratio of 40% of the evaporator volume. Experimental tests were performed in a vertical position considering thermal loads between 5W and 25W. The thermosyphons operated satisfactorily in all the tests. The operating temperature distribution as a function of time and the heat resistance behavior as a function of power dissipation have been presented for each analyzed working fluid. These results indicated that acetone is the working fluid that has the best thermal performance.
In this research, a study of the heat transfer enhancement in electronic components mounted in channels was conducted by using different materials in the conductive substrate. In this context, a numerical analysis was performed to investigate the cooling of 3D protruding heaters mounted on the bottom wall (substrate) of a horizontal rectangular channel using the ANSYS/FluentTM 15.0 software. Three different materials of the conductive substrate were analyzed, polymethyl methacrylate (PMMA), fiberglass reinforced epoxy laminate (FR4), and pure aluminum (Al). Uniform heat generation rate was considered for the protruding heaters and the cooling process happened through a steady laminar airflow, with constant properties. The fluid flow velocity and temperature profiles were uniform at the channel entrance. For the adiabatic substrate, the cooling process occurred exclusively by forced convection. For the conductive substrate, the cooling process was characterized by conjugate forced convection-conduction heat transfer through two mechanisms; one directly between the heaters surfaces and the flow by forced convection, and the other through conduction at the interfaces heater-substrate in addition to forced convection from the substrate to the fluid flow at the substrate surface. The governing equations and boundary conditions were numerically solved through a coupled procedure using the Control Volumes Method in a single domain comprising the solid and fluid regions. Commonly used properties in cooling of electronics components mounted in a PCB and typical geometry dimensions were utilized in the results acquisition. Some examples were presented, indicating the dependence of the substrate thermal conductivity related to the Reynolds number on the heat transfer enhancement. Thus, resulting in a lower work temperature at the electronic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.