Models based on analytical trophodynamics (AT) method have provided an analytical framework for modeling in ecology, including the dynamical flux of nutrients present in the soil for a fixed region. Dynamics occurring concurrently in different time scales are modeled. Through a mathematical treatment of the elements of both biotic and abiotic factors, is established  stability and conservation laws for growing trajectories, whose solutions of the second-order differential systems equations known as Volterra–Hamilton systems. All solutions trajectories obtained to follow the biological principles of energy conservation. The tensors of AT were computed with the computational algebraic package FINSLER. Moreover, in this chapter, we present an overview of the last results and actual status of research in this area.
Modo de acesso: World Wide Web Inclui bibliografia 1. Agricultura 2. Meio Ambiente 3. Zootecnia 4. Ciências Agrárias I. REDIN, Ezequiel II. Título. CDD-630 Sônia Márcia Soares de Moura -CRB 6/1896 O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos seus respectivos autores www.poisson.com.br
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.