Accelerating 3D-T mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T error of 6.5%.
Accelerating biexponential 3D-T mapping of knee cartilage with CS is feasible. The best results were obtained by STFD, EXP, and L + S SFD regularizers combined with spatial prefiltering. These 3 CS methods performed satisfactorily on synthetic phantom as well as in vivo knee cartilage for AFs up to 10, with median error below 15%.
Abstract. The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Nonlinear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ε. It is proved that, for any given ε that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ε. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ε of the half-squared residual.
The spin-lattice relaxation time in the rotating frame (T 1ρ ) has shown sensitiveness to loss of proteoglycan content in the cartilage 1,2 and T 1ρ relaxation mapping can be useful for early detection of osteoarthritis (OA). 3 To produce good and stable T 1ρ maps, many T 1ρ -weighted images must be acquired, taking a long acquisition time if a good signalto-noise ratio (SNR) and small variance in the estimated parameters are desired.
Ultrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration. It is based on regularized least squares using a l1 regularization norm. The method is tested to reconstruct an image of a point-like reflector, using both simulated and real data. The resolution of reconstructed image is compared with four traditional ultrasonic imaging reconstruction algorithms: B-scan, SAFT, ω-k SAFT and regularized least squares (RLS). The method demonstrates significant resolution improvement when compared with B-scan—about 91% using real data. The proposed scheme also outperforms traditional algorithms in terms of signal-to-noise ratio (SNR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.