Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds.
The objective of this work was to characterize exotic fruits (cambuci, araça-boi, camu-camu, jaracatia, araça) and commercial frozen pulps (araça, cambuci, umbu, coquinho, pana, native passion fruit, cagaita) from Brazil in relation to their bioactive compounds contents and antioxidant capacity. Camu-camu (Myrciaria dubia) presented the highest vitamin C and total phenolics contents (397 and 1797 mg/100 gf.w., respectively) and the highest DPPH• scavenging capacity. Coquinho (Butia capitata) also showed a significant vitamin C content (43 mg/100 gf.w.). Among the commercial frozen pulps, cagaita presented the higher DPPH scavenging activity and inhibition of β-carotene bleaching. A good correlation between total phenols and DPPH scavenging activity was found for fruits (r = 0.997) and commercial frozen pulps (r = 0.738). However, no correlation was found for total phenols and inhibition of β-carotene bleaching. Quercetin and kaempferol derivatives were the main flavonoids present in all samples and cyanidin derivatives were detected only in camu-camu. Camu-camu and araça (Psidium guineensis) showed the highest total ellagic acid contents (48 and 63.5 mg/100 gf.w.). All commercial frozen pulps presented lower contents of bioactive compounds and antioxidant capacity than their respective fruits. According to our results, camu-camu and araça might be sources of bioactive compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.