The canyon and twofold depression, major surface depressions, are predicted to be the primary and secondary receptor-binding sites on CVB3, respectively. Neutralizing immunogenic sites are predicted to lie on the extreme surfaces of the capsid at sites that lack amino acid sequence conservation among the CVBs. The ions located on the icosahedral threefold and fivefold axes together with the pocket factor may contribute to the pH stability of the coxsackieviruses.
WIN 51711 and WIN 52084 are structurally related, antiviral compounds that inhibit the replication of rhino (common cold) viruses and related picornaviruses. They prevent the pH-mediated uncoating of the viral RNA. The compounds consist of a 3-methylisoxazole group that inserts itself into the hydrophobic interior of the VP1 beta-barrel, a connecting seven-membered aliphatic chain, and a 4-oxazolinylphenoxy group (OP) that covers the entrance to an ion channel in the floor of the "canyon." Viral disassembly may be inhibited by preventing the collapse of the VP1 hydrophobic pocket or by blocking the flow of ions into the virus interior.
We conjecture that the binding of the receptor to HRV16 can occur only when the pocket is temporarily empty, when it is possible for the canyon floor to be deformed downwards into the pocket. We further propose that the role of the pocket factor is to stabilize virus in transit from one host cell to the next, and that binding of ICAM-1 traps the pocket in the empty state, destabilizing the virus as required for uncoating.
The binding to human rhinovirus 14 of a series of eight antiviral agents that inhibit picornaviral uncoating after entry into host cells has been characterized crystallographically. All of these bind into the same hydrophobic pocket within the viral protein VP1 beta-barrel structure, although the orientation and position of each compound within the pocket was found to differ. The compounds cause the protein shell to be less flexible, thereby inhibiting disassembly. Although the antiviral potency of these compounds varies by 120-fold, they all induce the same conformational changes on the virion. The interactions of these compounds with the viral capsid are consistent with their observed antiviral activities against human rhinovirus 14 drug-resistant mutants and other rhinovirus serotypes. Crystallographic studies of one of these mutants confirm the partial sequencing data and support the finding that this is a single mutation that occurs within the binding pocket.
The amino-acid sequence and structural similarity between HRV3 and HRV14 suggests that rhinoviruses in the same antiviral group have similar amino-acid sequences and structures. The similar amino-acid composition in the pocket region and the viral protein VP1 N termini in all known group B HRV sequences suggests that these viruses may all contain pocket factors and ordered N-terminal amphipathic helices in VP1. Both of these factors contribute to viral stability, which is consistent with the observations that group B rhinoviruses have a higher chance of successful transmission from one host to another and is a possible explanation for the observed higher pathogenicity of these rhinoviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.