We propose an algorithm, multifractal cross-correlation analysis (MFCCA), which constitutes a consistent extension of the detrended cross-correlation analysis and is able to properly identify and quantify subtle characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods, like multifractal extension, have at best serious limitations for most of the signals describing complex natural processes and often indicate multifractal cross-correlations when there are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the generalized Hurst exponent and the multifractal scaling parameter λ(q). This relation provides information about the character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics of the analyzed processes than allowed by any other related method available so far. By using examples of time series from the stock market, we show that financial fluctuations typically cross-correlate multifractally only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged cross-correlations.
We show that recent stock market fluctuations are characterized by the cumulative distributions whose tails on short, minute time scales exhibit power scaling with the scaling index α > 3 and this index tends to increase quickly with decreasing sampling frequency. Our study is based on high-frequency recordings of the S&P500, DAX and WIG20 indices over the interval The so-called financial stylized facts are among the central issues of econophysics research. Much effort has been devoted on both the empirical and the theoretical level to such phenomena like fat-tailed distributions of financial fluctuations, persistent correlations in volatility, multifractal properties of returns etc. Specifically, the interest in the return distributions can be traced back to an early work of Mandelbrot [1] in which he proposed a Lévy process as the one governing the logarithmic price fluctuations. Much later this issue was revisited in [2] based on data with much better statistics and a new model of exponentially-truncated Lévy flights was introduced. Then, in an extensive systematic study of the largest American stock markets [3] the distribution tails for both the prices and the indices were shown to be power-law with the scaling exponent α ≃ 3. The most striking outcome of that study was that despite the fact that the tails were well outside the Lévy-stable regime (α ≤ 2), they were apparently stable under time aggregation up to several days for indices and up to a month for stocks. The existence of return distributions with
Based on a recently proposed q-dependent detrended cross-correlation coefficient, ρ_{q} [J. Kwapień, P. Oświęcimka, and S. Drożdż, Phys. Rev. E 92, 052815 (2015)PLEEE81539-375510.1103/PhysRevE.92.052815], we generalize the concept of the minimum spanning tree (MST) by introducing a family of q-dependent minimum spanning trees (qMSTs) that are selective to cross-correlations between different fluctuation amplitudes and different time scales of multivariate data. They inherit this ability directly from the coefficients ρ_{q}, which are processed here to construct a distance matrix being the input to the MST-constructing Kruskal's algorithm. The conventional MST with detrending corresponds in this context to q=2. In order to illustrate their performance, we apply the qMSTs to sample empirical data from the American stock market and discuss the results. We show that the qMST graphs can complement ρ_{q} in disentangling "hidden" correlations that cannot be observed in the MST graphs based on ρ_{DCCA}, and therefore, they can be useful in many areas where the multivariate cross-correlations are of interest. As an example, we apply this method to empirical data from the stock market and show that by constructing the qMSTs for a spectrum of q values we obtain more information about the correlation structure of the data than by using q=2 only. More specifically, we show that two sets of signals that differ from each other statistically can give comparable trees for q=2, while only by using the trees for q≠2 do we become able to distinguish between these sets. We also show that a family of qMSTs for a range of q expresses the diversity of correlations in a manner resembling the multifractal analysis, where one computes a spectrum of the generalized fractal dimensions, the generalized Hurst exponents, or the multifractal singularity spectra: the more diverse the correlations are, the more variable the tree topology is for different q's. As regards the correlation structure of the stock market, our analysis exhibits that the stocks belonging to the same or similar industrial sectors are correlated via the fluctuations of moderate amplitudes, while the largest fluctuations often happen to synchronize in those stocks that do not necessarily belong to the same industry.
We propose a novel algorithm -Multifractal Cross-Correlation Analysis (MFCCA) -that constitutes a consistent extension of the Detrended Cross-Correlation Analysis (DCCA) and is able to properly identify and quantify subtle characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods like MF-DXA have at best serious limitations for most of the signals describing complex natural processes and often indicate multifractal cross-correlations when there are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time, and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the generalized Hurst exponent and the multifractal scaling parameter λq. This relation provides information about character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics of the analyzed processes than allowed by any other related method available so far. By using examples of time series from stock market, we show that financial fluctuations typically cross-correlate multifractally only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged cross-correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.