Background: Lung cancer is one of the most common causes of death worldwide with a relatively high fatality rate and a mean 5-years survival of about 18%. One of the hallmarks of cancer is the extracellular matrix (ECM) remodeling, which is crucial for metastasis. This process may be regulated by miRs targeting metalloproteinases (MMPs) associated with the ECM breakdown and metastatic process or blocking the action of tissue inhibitors of metalloproteinases (TIMPs). Search for early biomarkers is essential in detecting non-small cell lung cancer (NSCLC) and distinguishing its subtypes: Adenocarcinoma (AC) from Squamous Cell Carcinoma (SCC), enabling targeted chemotherapy.Methods: MiR-17 and miR-20a targeting MMP2 and TIMP3 were selected by TCGA data analysis with further validation using miRTarBase and literature. The study group comprised 47 patients with primary NSCLC (AC and SCC subtypes). RNA was isolated from the tumor and normal-looking neighboring tissue (NLNT) free of cancer cells. MiRs from peripheral blood exosomes were extracted on admission and 5-7 days after surgery. Gene and miRs expression were assessed in qPCR using TaqMan probes. Results:The MMP2 has been expressed on a similar level in NLNT, as in cancer. While, TIMP3 expression was decreased both in cancer tissue and NLNT, with significantly lower expression in cancer. TIMP3 downregulation in NLNT and in SCC subtype correlated negatively with miR-20a. The preoperative miR-17 expression was significantly higher among patients with SCC compared to AC. Receiver operating characteristic (ROC) analysis of miR-17 as AC subtype classifier revealed 90% specificity and 48% sensitivity in optimal cut-off point with area under ROC curve (AUC): 0.71 (95%CI: 0.55-0.87). Within NSCLC subtypes: a strong negative correlation between pack-years (PY) and TIMP3 expression was observed for NLNT in the SCC group. Czarnecka et al. ECM Remodeling in NSCLC Conclusion:The TIMP3 silencing observed in the NLNT and its negative correlation with presurgical expression of miR-20a (from serum exosomes), suggest that miRs can influence ECM remodeling at a distance from the center of the lesion. The miRs expression pattern in serum obtained before surgery significantly differs between AC and SCC subtypes. Moreover, decreased TIMP3 expression in NLNT (in SCC group) negatively correlates with the amount of tobacco smoked in a lifetime in PY.Keywords: NSCLC molecular diagnostic markers, miRNA regulation, microRNA, extracellular matrix remodeling, metalloproteinases, tissue inhibitors of metalloproteinases, exosomes absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Despite being standard tools for decision-making, the European Organisation for Research and Treatment of Cancer (EORTC), European Association of Urology (EAU), and Club Urologico Espanol de Tratamiento Oncologico (CUETO) risk groups provide moderate performance in predicting recurrence-free survival (RFS) and progression-free survival (PFS) in non-muscle-invasive bladder cancer (NMIBC). In this retrospective combined-cohort data-mining study, the training group consisted of 3570 patients with de novo diagnosed NMIBC. Predictors included gender, age, T stage, histopathological grading, tumor burden and diameter, EORTC and CUETO scores, and type of intravesical treatment. The models developed were externally validated using an independent cohort of 322 patients. Models were trained using Cox proportional-hazards deep neural networks (deep learning; DeepSurv) with a proprietary grid search of hyperparameters. For patients treated with surgery and bacillus Calmette-Guérin-treated patients, the models achieved a c index of 0.650 (95% confidence interval [CI] 0.649-0.650) for RFS and 0.878 (95% CI 0.873-0.874) for PFS in the training group. In the validation group, the c index was 0.651 (95% CI 0.648-0.654) for RFS and 0.881 (95% CI 0.878-0.885) for PFS. After inclusion of patients treated with mitomycin C, the c index for RFS models was 0.6415 (95% CI 0.6412-0.6417) for the training group and 0.660 (95% CI 0.657-0.664) for the validation group. Models for PFS achieved a c index of 0.885 (95% CI 0.885-0.885) for the training set and 0.876 (95% CI 0.873-0.880) for the validation set. Our tool outperformed standard-of-care risk stratification tools and showed no evidence of overfitting. The application is open source and available at https:// biostat.umed.pl/deepNMIBC/.
IntroductionTGF-β and its receptors play a crucial role in asthma pathogenesis and bronchial remodeling in the course of the disease. TGF-β1, TGF-β2, and TGF-β3 isoforms are responsible for chronic inflammation, bronchial hyperreactivity, myofibroblast activation, fibrosis, bronchial remodeling, and change the expression of approximately 1000 genes in asthma. TGF-β SNPs are associated with the elevated plasma level of TGF-β1, an increased level of total IgE, and an increased risk of remodeling of bronchi.MethodsThe analysis of selected TGF-β1, TGF-β2, TGF-β3-related single-nucleotide polymorphisms (SNP) was conducted on 652 DNA samples with an application of the MassARRAY® using the mass spectrometry (MALDI-TOF MS). Dataset was randomly split into training (80%) and validation sets (20%). For both asthma diagnosis and severity prediction, the C5.0 modelling with hyperparameter optimization was conducted on: clinical and SNP data (Clinical+TGF), only clinical (OnlyClinical) and minimum redundancy feature selection set (MRMR). Area under ROC (AUCROC) curves were compared using DeLong’s test.ResultsMinor allele carriers (MACs) in SNP rs2009112 [OR=1.85 (95%CI:1.11-3.1), p=0.016], rs2796821 [OR=1.72 (95%CI:1.1-2.69), p=0.017] and rs2796822 [OR=1.71 (95%CI:1.07-2.71), p=0.022] demonstrated an increased odds of severe asthma. Clinical+TGF model presented better diagnostic potential than OnlyClinical model in both training (p=0.0009) and validation (AUCROC=0.87 vs. 0.80,p=0.0052). At the same time, the MRMR model was not worse than the Clinical+TGF model (p=0.3607 on the training set, p=0.1590 on the validation set), while it was better in comparison with the Only Clinical model (p=0.0010 on the training set, p=0.0235 on validation set, AUCROC=0.85 vs. 0.87). On validation set Clinical+TGF model allowed for asthma diagnosis prediction with 88.4% sensitivity and 73.8% specificity.DiscussionDerived predictive models suggest the analysis of selected SNPs in TGF-β genes in combination with clinical factors could predict asthma diagnosis with high sensitivity and specificity, however, the benefit of SNP analysis in severity prediction was not shown.
Tumours are characterised by an ability to avoid immune destruction and the presence of cancer-associated inflammation. Better understanding of the link between lung cancer and such inflammation is vital for early detection and personalized treatment. Thus, we examined the mRNA expression of interleukins IL-1β, IL-6, IL-17 and miR-9, miR-122 as potential useful biomarkers of NSCLC. Tumour tissues, non-cancerous tissue and blood samples were collected from 39 patients with primary NSCLC undergoing surgical treatment. The selected RNA was isolated from tissue samples and selected miRNAs from peripheral blood exosomes. This RNA was transcribed to cDNA and quantified using RT-qPCR. Significantly higher expression of the selected interleukins was observed in non-cancerous than tumour tissue, and IL-6 was significantly higher in the tumour tissue of patients with a history of ≤ 40 pack-years (PYs) (2.197, IQR: 0.821–4.415) than in those with > 40 PYs (0.461, IQR: 0.372–0.741; p = 0.037). It is clear that inflammatory processes play a role in NSCLC, as indicated by the upregulation of IL-1β and IL-6 in tumour and adjacent tissue, and that smoking has a strong influence on inflammation in tumourigenesis, demonstrated by the upregulation of IL-6 in tumour samples among patients with ≤ 40 PYs compared to > 40 PYs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.