The influence of the thermo-oxidative aging semi-crystalline polyethylene terephthalate process on the thermal and mechanical properties was analysed in the article. For this purpose, PET was aged at 140 °C for 21, 35 and 56 days. The research showed that as a result of aging, the amount of the crystalline phase increases by about 8%, which translates into the properties of the aged material. The glass transition and melt temperature of lamellar crystals formed during first and second crystallisation increase with aging. The mechanical properties of the material were analysed in the temperature range of 25 to 75 °C. The tests were showing an increase in Young’s modulus and a decrease in elongation at the break as a result of aging. This phenomenon was particularly visible during tests at 75 °C and during the morphological observation of the fracture surface, where the fracture character of the material changes from ductile to brittle. In the case of the material aged for the longest time, the temperature has a negligible influence on the elongation at break.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.