Abstract.We report on our study of the free-fall expansion of a finite-temperature BoseEinstein condensed cloud of 87 Rb. The experiments are performed with a variable total number of atoms while keeping constant the number of atoms in the condensate. The results provide evidence that the BEC dynamics depends on the interaction with thermal fraction. In particular, they provide experimental evidence that thermal cloud compresses the condensate.
We describe the method allowing quantitative interpretation of absorptive images of mixtures of BEC and thermal atoms which reduces possible systematic errors associated with evaluation of the contribution of each fraction. By using known temperature dependence of the BEC fraction, the analysis allows precise calibration of the fitting results. The developed method is verified in two different measurements and compares well with theoretical calculations and with measurements performed by another group.
We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.