Maintenance of mixed grass-legume pastures for stand longevity and improved animal utilization is a challenge in warm-season climates. The goal of this study was to assess grazing management on stand persistence, forage intake, and N balance of beef heifers grazing mixed pastures of Brachiaria brizantha and Arachis pintoi. A two-year experiment was carried out in Brazil, where four grazing management were assessed: rest period interrupted at 90%, 95%, and 100% of light interception (LI) and a fixed rest period of 42 days (90LI, 95LI, 100LI, and 42D, respectively). The LI were taken at 50 points at ground level and at five points above the canopy for each paddock using a canopy analyzer. For all treatments, the post-grazing stubble height was 15 cm. Botanical composition and canopy structure characteristics such as canopy height, forage mass, and vertical distribution of the morphological composition were evaluated pre-and post-grazing. Forage chemical composition, intake, and microbial synthesis were also determined. A randomized complete block design was used, considering the season of the year as a repeated measure over time. Grazing management and season were considered fixed, while block and year were considered random effects. In the summer, legume mass accounted for 19% of the canopy at 100LI, which was less than other treatments (a mean of 30%). The 100LI treatment had a greater grass stem mass compared with other treatments. In terms of vertical distribution for 100LI, 38.6% of the stem mass was above the stubble height, greater than the 5.7% for other treatments. The canopy structure limited neutral detergent fiber intake (P = 0.007) at 100LI (1.02% of BW/d), whereas 42D, 90LI, and 95LI treatments had NDF intake close to 1.2% of BW/d. The intake of digestible organic matter (OM; P = 0.007) and the ratio of crude protein/digestible OM (P < 0.001) were less at 100LI in relation to the other treatments. The production of microbial N (P < 0.001) and efficiency of microbial synthesis (P = 0.023) were greater at 95LI and 90LI, followed by 42D and less at 100LI. Overall, the range from 90 to 95% of LI is the recommendation to interrupt the rest period, since this strategy enhanced community stability, forage intake, and nutritional value of the diet. Under on-farm conditions, brachiaria grass and forage peanut pastures should be managed at a range height of 24 to 30 cm.
A well‐established canopy is crucial for a stable mixed grass–legume forage pasture. The aim of this study was to assess a defoliation intensity that can ensure the establishment of mixed pasture of brachiaria grass (Brachiaria brizantha) intercropped with forage peanut (Arachis pintoi). The treatments comprised four canopy heights: 10, 20, 30 and 40 cm, maintained throughout the first 3 years of pasture establishment. Canopy structure, morphogenetic and structural characteristics were measured. A block design was used with four replicates, and seasons of the year were considered using repeated measurements over time. Light interception during the experimental period was 86.3%, 95.9%, 97.6%, and 99.1% for 10, 20, 30 and 40 cm of defoliation respectively (p < .001). Competition for light in taller canopies (at 30 and 40 cm) caused etiolation of forage peanut (greater internode, petiolate and stolon lengths). This response promoted its upward growth, leading to a lower stolon density compared with 10 and 20 cm. The treatment at 10 cm displayed a predominance of forage peanut (up to 0.614), potentially compromising community stability. Overall, the 20 cm canopy height showed a desired botanical composition (from 0.20 to 0.45 of legume in forage mass) and thus was considered an ideal defoliation intensity for establishment of mixed canopies of brachiaria grass and forage peanut.
This study evaluated two potassium sorbate (PS) and sodium benzoate (SB) application rates in improving the aerobic stability of maize silage. Treatments included no additive, the addition of PS at 1 and 2 g kg−1 fresh matter (FM) and the addition of SB at 1 and 2 g kg−1 FM. Four replicates of each treatment were ensiled in 15‐L plastic jars. The silages were analysed for their fermentative characteristics and were subjected to an aerobic stability test with pH and yeast and mould count measurements. Considering fermentation quality and aerobic stability, both additives were effective. The PS was more active against yeasts during aerobic exposure. When the additives were applied at 2 g kg−1, the silages were more stable (256 h, on average) than those with 1 g kg−1 (119 h, on average) and control (61 h). Aerobic deterioration was more pronounced in the controls than in the treated silages. Silages treated at 2 g kg−1 had consistent effects on pH values and yeast counts over 288 h of aerobiosis. Overall, PS and SB applied at 2 g kg−1 were more effective in improving aerobic stability.
Warm‐season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO–Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. ‘Tanzânia’) and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17‐mo experiment with Tanzânia guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. ‘Xaraes’], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha−1, averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha−1 (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.