Cariostatic treatment has been shown to successfully arrest caries. However, it blackens the carious tooth structure. This study evaluated the effects of an experimental cariostatic agent with silver nanoparticles (Ag-Nano) using microhardness (MH) and microbiological tests. The cariostatic agents tested were: Saforide®, Cariestop®, Ancarie® and Ag-Nano. Sixty-six samples from deciduous enamel were submitted to initial (after pH cycling to obtain initial caries-like lesion) and final (after cariostatic application) MH testing and %MH values were calculated. After longitudinal sectioning, internal (I) MH was evaluated. Strains of Streptococcus mutans, Escherichia coli, and Enterococcus faecalis in brain-heart infusion culture were treated with the cariostatic agents. Agar diffusion tests (ADTs) were performed and minimum inhibitory concentrations were determined. The statistical tests used were: Kruskal-Wallis and Dunn (%MD; ADT; MIC) and ANOVA followed by Tukey's test (I-MH) (p<0.05). The %MH of Saforide® was significantly greater than that of Ag-Nano (p<0.05). Internal MH showed progressive improvement in the enamel remineralization for all cariostatic tested. In ADTs showed greater inhibition of S. mutans, E. faecalis, and E. coli by Saforide® than by Ancarie® and Ag-Nano. Ag-Nano was able to inhibit 100% microorganism growth at a lower concentration than required for the other agents. It was concluded that Ag-Nano treatment promoted remineralization of deciduous tooth enamel with initial caries-like lesion and bactericidal activity.
The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N = 10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25 × 2 × 2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a = 5%) showing significant interaction (P = 0.008), for SC: Uni (241.71 ± 67.77)a, Uni-Short (221.05 ± 71.97)a, Ind (215.21 ± 46.59)ab, SW (190.51 ± 31.49)abc, Short (156.31 ± 28.76)bcd, Tpl (132.51 ± 20.21)cd, Control SC (101.47 ± 19.79)d and for HC: Ind (268.93 ± 105.65)a, Uni (215.14 ± 67.60)ab, Short (198.44 ± 95.27)abc, Uni-Short (189.56 ± 92.27)abc, Tpl (161.32 ± 62.51)cd, SW (106.69 ± 28.70)cd, and Control HC (93.39 ± 39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics.
ObjectivesThis study evaluated smear layer removal by different chemical solutions used with or without ultrasonic activation after post preparation.Materials and MethodsForty-five extracted uniradicular human mandibular premolars with single canals were treated endodontically. The cervical and middle thirds of the fillings were then removed, and the specimens were divided into 9 groups: G1, saline solution (NaCl); G2, 2.5% sodium hypochlorite (NaOCl); G3, 2% chlorhexidine (CHX); G4, 11.5% polyacrylic acid (PAA); G5, 17% ethylenediaminetetraacetic acid (EDTA). For the groups 6, 7, 8, and 9, the same solutions used in the groups 2, 3, 4, and 5 were used, respectively, but activated with ultrasonic activation. Afterwards, the roots were analyzed by a score considering the images obtained from a scanning electron microscope.ResultsEDTA achieved the best performance compared with the other solutions evaluated regardless of the irrigation method (p < 0.05).ConclusionsUltrasonic activation did not significantly influence smear layer removal.
This research aims to probe the porosity profile and polymerization shrinkage of two different dual cure resin cements with different dentin bonding systems. The self-adhesive resin cement RelyX U200 (named RU) and the conventional Allcem Core (named AC) were analyzed by x-ray microtomography (lCT) and Scanning Electron Microscopy (SEM). Each cement was divided into two groups (n 5 5): dual-cured (RUD and ACD) and self-cured (RUC and ACC). lCT demonstrated that the method of polymerization does not influence the porosity profile but the polymerization shrinkage. Fewer concentration of pores was observed for the conventional resin cement (AC), independently the method used for curing the sample. In addition, SEM showed that AC has more uniform surface and smaller particle size. The method of polymerization influenced the polymerization shrinkage, since no contraction for both RUC and ACC was observed, in contrast with results from dual-cured samples. For RUD and ACD the polymerization shrinkage was greater in the lower third of the sample and minor in the upper third. This mechanical behavior is attributed to the polymerization toward the light. mCT showed to be a reliable technique to probe porosity and contraction due to polymerization of dental cements.
K E Y W O R D Sdental composite, photo-cure, polymerization contraction, self-cure, X-ray microtomography
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.