Graphics Processing Units (GPUs) are considered a promising solution for high-performance safety-critical applications, such as self-driving cars. In this application domain, the use of fault tolerance techniques is mandatory to detect or correct faults, since they must work properly even in the presence of faults. GPUs are designed with aggressive technology scaling, which makes them susceptible to faults caused by radiation interference, such as the Single Event Upsets (SEUs), which can lead the system to a failure, and that is unacceptable in safety-critical applications. In this paper, we evaluate different software-based hardening techniques developed to detect SEUs in GPUs general-purpose registers and propose optimizations to improve performance and memory utilization. The techniques are implemented in four case-study applications and evaluated in a general-purpose soft-core GPU based on the NVIDIA G80 architecture. A fault injection campaign is performed at register transfer level to assess the fault detection potential of the implemented techniques. Results show that the proposed improvements can be tailored for different scenarios, helping engineers in navigating the design space of hardened GPGPU applications.
This work proposes a comprehensive ISA extension to improve GPU reliability to transient effects. Three additional instructions are proposed, implemented, and combined with software-based datapath duplication. Modified program codes are compared to state-of-the-art software-based fault tolerance techniques in terms of execution time. The circuit area is evaluated against the original GPU architecture, and a fault injection campaign is performed to assess reliability. Results show that this comprehensive ISA extension improves performance and fault detection capabilities of software-based approaches at negligible costs in terms of circuit area. This work can help engineers in designing more efficient and resilient GPU architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.