Improved dental adhesive technology has extensively influenced modern concepts in restorative dentistry. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which basically relies on the effectiveness of current enamel-dentine adhesives. Nowadays, the interaction of adhesives with the dental substrate is based on two different strategies, commonly described as an etch-and-rinse and a self-etch approach. In an attempt to simplify the bonding technique, manufacturers have decreased the number of steps necessary for the accomplishment of the bonding procedure. As a consequence, two-step etch-and-rinse and one-step (self-etch) adhesives were introduced and gained rapid popularity in the dental market due to their claimed user-friendliness and lower technique sensitivity. However, many concerns have been raised on the bonding effectiveness of these simplified adhesives, especially in terms of durability, although this tends to be very material dependent. In order to blend all the adhesive components into one single solution, one-step adhesives were made more acidic and hydrophilic. Unfortunately, these properties induce a wide variety of seemingly unrelated problems that may jeopardize the effectiveness and stability of adhesion to the dental substrate. Being more susceptible to water sorption and thus nanoleakage, these adhesives are more prone to bond degradation and tend to fail prematurely as compared to their multi-step counterparts. Incidentally, another factor that may interfere with the bonding effectiveness of adhesives is the technique used for caries removal and cavity preparation. Several tools are on the market today to effectively remove carious tissue, thereby respecting the current trend of minimum intervention. Despite their promising performance, such techniques modify the tooth substrate in different aspects, possibly affecting bonding effectiveness. Altogether, we may conclude that not only the adhesive formulation, but also substrate nature must be taken into account to achieve a stable bonding interface, rendering the restorative treatment more predictable in terms of clinical performance. In this review, we analyse the current theoretical and clinical aspects of adhesion to enamel and dentine, and discuss the diverse possibilities to overcome problems which nowadays still challenge clinicians in their achievement of a more stable and effective bond to tooth enamel and dentine.
Bond-strength testing is the method most used for the assessment of bonding effectiveness to enamel and dentin. We aimed to disclose general trends in adhesive performance by collecting dentin bond-strength data systematically. The PubMed and EMBASE databases were used to identify 2,157 bond-strength tests in 298 papers. Most used was the micro-tensile test, which appeared to have a larger discriminative power than the traditional macro-shear test. Because of the huge variability in dentin bond-strength data and the high number of co-variables, a neural network statistical model was constructed. Variables like 'research group' and 'adhesive brand' appeared most determining. Weighted means derived from this analysis confirmed the high sensitivity of current adhesive approaches (especially of all-in-one adhesives) to long-term water-storage and substrate variability.
The current trend towards minimum-intervention dentistry has introduced laser technology as an alternative technique for cavity preparation. This study assessed the null hypothesis that enamel prepared either by Er,Cr:YSGG laser or conventional diamond bur is equally receptive to adhesive procedures. The buccal and lingual surfaces of 35 sound human molars were prepared with Er,Cr:YSGG laser or a medium-grit diamond bur. One etch&rinse (OptiBond FL) and three self-etch adhesives (Adper Prompt L-Pop, Clearfil SE Bond and Clearfil S3 Bond) were applied on laser-irradiated and bur-cut enamel, followed by the application of a 5-6 mm build-up of Z100. The micro-tensile bond strength (microTBS) was determined after 24 hours of storage in water at 37 degrees C. Prepared enamel surfaces and failure patterns were evaluated using a stereomicroscope and a field-emission-gun scanning electron microscope (Feg-SEM). The pTBS to laser-irradiated enamel was significantly lower than to bur-cut enamel (p<0.05), with the exception of Clearfil S3 Bond, which bonded equally effectively to both substrates. The latter presented the highest microTBS on laser-irradiated enamel, though it was not statistically different from the microTBS of OptiBond FL. SEM analysis revealed significant morphological alterations of the laser-irradiated enamel surface, such as areas of melted and recrystalized hydroxyapatite and deep extensive micro-cracks. In conclusion, the bonding effectiveness of adhesives to laser-irradiated enamel depends not only on the structural substrate alterations induced by the laser, but also on the characteristics of the adhesive employed.
The mechanisms behind bond degradation are still largely unknown, in particular with respect to self-etch adhesives. One-step adhesives have been especially documented with problems, such as insufficient polymerization, water-uptake and subsequent plasticization, water- and enzyme-induced nanoleakage, and/or the presence of voids due to phase-separation or osmosis. It was hypothesized that these shortcomings may weaken the adhesive layer and, as such, may jeopardize long-term bonding. In contrast to the control three-step etch & rinse adhesive, the bond strength to dentin of both one-step and two-step self-etch adhesives decreased after six-month water storage. TEM revealed not only that they exhibited filler de-bonding within the adhesive resin layer, due to hydrolysis of the filler-matrix coupling, but also that they failed predominantly directly under the hybrid layer at dentin, in spite of the presence of interfacial droplets and nanoleakage in the adhesive layer. These failures just under the hybrid layer may be attributed to insufficient encapsulation of surface smear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.