Polyanionic collagen-elastin matrices (PCEMs) possess attractive properties, such as extra negative charges, piezoelectricity, and extra RGD sites, which could make them effective in the treatment of bone defects. Although they are biocompatible with the osteogenesis process, it is unknown if PCEMs could aid in the recovery of bone defects in challenging situations. To evaluate this hypothesis, three PCEMs, differing in their negative charge density, were implanted in rat calvarial defects. Specimens harvested at 3, 7, 15, 30, and 60 days after implantation were evaluated radiographically and histologically. Two matrices were able to sustain the osteogenesis process and quickly recover the lost bone structure. The third, and most electronegative, left matrix remnants amidst the areas of new bone. The control showed bone formation limited to the boundaries of the defect. These results suggest that some PCEMs might become a useful resource in the treatment of bone defects.
Optimized radiographic techniques for clinical images of chest, skull and pelvis using conventional single-phase, three-phase and high-frequency x-ray units for a standard patient have been developed. Optimization of image contrast and optical density was obtained by using a homogeneous phantom (PEP) and an Anderson Rando anthropomorphic phantom. Image quality was evaluated by nine radiologists in independent analyses, leading to the choice of the optimized technique. A course of action to implement and validate these techniques in other radiographic systems has also been introduced. A realistic-analytic phantom (RAP) was constructed to certify the validation process. The optimized radiographic technique was implemented in the routine of our home hospital radiodiagnostic routine, enabling a reduction in patient doses around 25, 14 and 72%, respectively, for chest, skull and pelvis exams when compared with the previously used techniques. In addition, a corresponding reduction in the x-ray tube load of 68, 14 and 62% for the respective mentioned exams has been observed. In conclusion, implemented optimal techniques can lead to a reduction in the rate of film rejection, thus contributing to a better risk-benefit relationship for the patient and cost-benefit for the radiodiagnostic facility.
ObjectiveSeveral studies have been published regarding the use of bismuth shielding to protect the breast in computed tomography (CT) scans and, up to the writing of this article, only one publication about barium shielding was found. The present study was aimed at characterizing, for the first time, a lead breast shielding.Materials and MethodsThe percentage dose reduction and the influence of the shielding on quantitative imaging parameters were evaluated. Dose measurements were made on a CT equipment with the aid of specific phantoms and radiation detectors. A processing software assisted in the qualitative analysis evaluating variations in average CT number and noise on images.ResultsThe authors observed a reduction in entrance dose by 30% and in CTDIvol by 17%. In all measurements, in agreement with studies in the literature, the utilization of cotton fiber as spacer object reduced significantly the presence of artifacts on the images. All the measurements demonstrated increase in the average CT number and noise on the images with the presence of the shielding.ConclusionAs expected, the data observed with the use of lead shielding were of the same order as those found in the literature about bismuth shielding.
In this work we model the noise properties of a computed radiography (CR) mammography system by adding an extra degree of freedom to a well-established noise model, and derive a variance-stabilizing transform (VST) to convert the signal-dependent noise into approximately signal-independent. The proposed model relies on a quadratic variance function, which considers fixed-pattern (structural), quantum and electronic noise. It also accounts for the spatial-dependency of the noise by assuming a space-variant quantum coefficient. The proposed noise model was compared against two alternative models commonly found in the literature. The first alternative model ignores the spatial-variability of the quantum noise, and the second model assumes negligible structural noise. We also derive a VST to convert noisy observations contaminated by the proposed noise model into observations with approximately Gaussian noise and constant variance equals to one. Finally, we estimated a look-up table that can be used as an inverse transform in denoising applications. A phantom study was conducted to validate the noise model, VST and inverse VST. The results show that the space-variant signal-dependent quadratic noise model is appropriate to describe noise in this CR mammography system (errors< 2.0% in terms of signal-to-noise ratio). The two alternative noise models were outperformed by the proposed model (errors as high as 14.7% and 9.4%). The designed VST was able to stabilize the noise so that it has variance approximately equal to one (errors< 4.1%), while the two alternative models achieved errors as high as 26.9% and 18.0%, respectively. Finally, the proposed inverse transform was capable of returning the signal to the original signal range with virtually no bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.