Excess weight and obesity are major risk factors for many chronic diseases, and weight-loss interventions often include systematic exercise and nutritional supplements. The purpose of this study was to determine the independent/synergistic effects of Arthrospira (Spirulina) maxima supplementation (six weeks, 4.5 g·day−1) and a systematic physical exercise program (six weeks, twice weekly) on the body composition and cardiorespiratory fitness of overweight and obese subjects. To achieve this, 27 overweight and 25 obese sedentary male subjects were assigned to four interventions through a randomized double-blind, crossover controlled trial: A physical exercise program, with (SE) or without (Ex) Spirulina maxima; or no-exercise program, with (Sm) and without (C) Spirulina maxima. The body composition and cardiorespiratory fitness parameters were taken during a maximum intensity test. As compared to the C group, the body fat percentage of the SE, Sm and Ex groups was reduced (p < 0.05), while their maximal oxygen uptake improved (r = −0.40), and obese subjects benefited more significantly. Weight loss, the time to reach fatigue and the onset of blood lactate accumulation were improved in both of the Spirulina maxima supplemented groups, regardless of the subjects’ body weight. Spirulina maxima supplementation synergistically improves the effects of systematic exercise on body composition and cardiorespiratory fitness parameters in overweight, but mostly in individuals with obesity. Trial registration: Clinical Trials, NCT02837666. Registered 19 July 2016.
Low-fat diets, lipid-modifying nutraceuticals and a higher level of physical activity are often recommended to reduce dyslipidemia. A double-blind, randomized, crossover, controlled trial was designed to evaluate the independent and synergistic effects of Arthrospira (Spirulina) maxima supplementation (4.5 g·day−1) with or without performing a physical exercise program (PEP: aerobic exercise (3 days·week−1) + high-intensity interval training (2 days·week−1)) on blood lipids and BMI of 52 sedentary men with excess body weight. During six weeks, all participants were assigned to four intervention treatments (Spirulina maxima with PEP (SE), placebo with PEP (Ex), Spirulina maxima without PEP (Sm), placebo without PEP (C; control)) and plasma lipids were evaluated spectrophotometrically pre- vs. post intervention in stratified subgroups (overweight, obese and dyslipidemic subjects). Pre/post comparisons showed significant reductions in all plasma lipids in the SE group, particularly in those with dyslipidemia (p ≤ 0.043). Comparing the final vs. the initial values, BMI, total cholesterol, triglycerides and low-density lipoprotein cholesterol were decreased. High-density lipoprotein cholesterol increased in all treatment groups compared to C. Changes were observed mostly in SE interventions, particularly in dyslipidemic subjects (p < 0.05). Spirulina maxima supplementation enhances the hypolipidemic effect of a systematic PEP in men with excess body weight and dyslipidemia.
Cardiovascular diseases are part of the highly preventable chronic diseases associated with changes in lifestyle. Within them, physical activity, low-fat and high-fiber diets are distinguished as the main support for prevention, even when supplementation with nutraceuticals has become a very common practice. Fifty-two young sedentary men with excess body weight (body mass index (BMI) ≥ 25 kg·m−2) were enrolled in a randomized-crossover controlled trial [six weeks of a systematic physical exercise with Spirulina maxima or placebo supplementation (4.5 g·day−1)]. Body composition, blood lipid profile, and maximal oxygen uptake were determined pre/post intervention. Pairwise comparisons showed a significant improvement (p < 0.01) on blood lipid profile in the group of exercise plus Spirulina maxima. Moreover, correlations of absolute changes of BMI, body fat percentage, blood lipids and maximal oxygen uptake were statistically significant (p < 0.01). These results indicate that the Spirulina maxima supplementation could be acting in a synergistic way with exercise due to the enhanced effects on body composition, cardiorespiratory fitness, and blood lipid profile. This phenomenon should be considered to reduce risk of cardiovascular disorders. Trial registration: Clinical Trials, NCT02837666 (July 19, 2016).
IntroductionIn order to reduce cardiovascular disease risk factors, a healthy diet must include dietary antioxidants from different sources (eg, Spirulina maxima) and regular practice of exercise should be promoted. There is some evidence from animal studies that S. maxima and exercise decrease cardiovascular disease risks factors. However, very few studies have proved the independent or synergistic effect of S. maxima plus exercise in humans. This study attempts to address the independent and synergistic effects in overweight and obese subjects participating in a systematic physical exercise programme at moderate intensity on general fitness, plasma lipid profile and antioxidant capacity.Methods and analysisUsing a randomised, double-blind, placebo-controlled, counterbalanced crossover study design, 80 healthy overweight and obese subjects will be evaluated during a 12-week isoenergetic diet accompanied by 4.5 g/day S. maxima intake and/or a physical systematic exercise programme at moderate intensity. Body composition, oxygen uptake, heart rate, capillary blood lactate, plasma concentrations of triacylglycerols, total, low-density and high-density lipoprotein cholesterol, antioxidant status, lipid oxidation, protein carbonyls, superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione reductase and paraoxonase will be assessed.Ethics and disseminationThis study and all the procedures have been approved by the Universidad Autonoma de Ciudad Juarez Bioethics Committee. Findings will be disseminated through peer-reviewed journals, national and international conferences.Trial registration numberClinicalTrials.gov: NCT02837666.
This study aimed to determine the body composition profile of candidates applying for a Physical Education and Sports major. 327 young adults (F: 87, M: 240) participated in this cross-sectional study. Nutritional status and body composition analysis were performed, and the profiles were generated using an unsupervised machine learning algorithm. Body mass index (BMI), percentage of fat mass (%FM), percentage of muscle mass (%MM), metabolic age (MA), basal metabolic rate (BMR), and visceral fat level (VFL) were used as input variables. BMI values were normal-weight although VFL was significantly higher in men (<0.001; η2 = 0.104). MA was positively correlated with BMR (0.81 [0.77, 0.85]; p < 0.01), BMI (0.87 [0.84, 0.90]; p < 0.01), and VFL (0.77 [0.72, 0.81]; p < 0.01). The hierarchical clustering analysis revealed two significantly different age-independent profiles: Cluster 1 (n = 265), applicants of both sexes that were shorter, lighter, with lower adiposity and higher lean mass; and, Cluster 2 (n = 62), a group of overweight male applicants with higher VFL, taller, with lower %MM and estimated energy expended at rest. We identified two profiles that might help universities, counselors and teachers/lecturers to identify applicants in which is necessary to increase physical activity levels and improve dietary habits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.