ResumoO presente estudo teve como objetivo desenvolver modelos matemáticos para a quantificação do teor de matéria orgânica, a partir da cor do solo, obtida por aparelho colorímetro no sistema Munsell de cores. Para esse fim, 912 amostras de solo foram coletadas na região de Porto Grande (Amapá) e enviadas para análises química, granulométrica e determinação da cor em amostras secas e úmidas. Os componentes valor e croma da cor do solo no sistema Munsell, obtidos por colorímetro, foram utilizados para quantificar através de regressão múltipla passo a passo (stepwise) o teor de matéria orgânica do solo. O modelo de predição com base em todas as amostras apresentou R 2 de 0,66 para amostras úmidas e 0,56 para amostras secas, ao serem validados utilizando amostras independentes. Foi possível ainda melhorar os modelos quando as amostras foram separadas por classe de solo ou textura, e os modelos gerados com base em cores de amostras úmidas foram sistematicamente superiores àqueles utilizando amostras secas. Em relação às classes de solo, os melhores resultados foram obtidos para Argissolos e Latossolos, ambos gerando um R 2 de validação independente de 0,73 (amostra úmida). Para textura, os melhores resultados foram obtidos para solos de textura muito argilosa, com R 2 de validação de 0,81 (amostra úmida). Os modelos de predição de matéria orgânica em função da cor do solo possuem simplicidade e potencial para serem utilizados no laboratório e no campo, especialmente para Argissolos e Latossolos de textura argilosa, de maneira automática e sem necessidade de uso de produtos ou reagentes.Palavras-chave: textura, classe de solo, cor do solo, colorímetro.Quantification of soil organic matter using mathematical models based on colorimetry in the Munsell color system Abstract This study aimed to derive mathematical models to predict the soil organic matter content based on soil color obtained by a colorimeter in the Munsell color system. A total of 907 soil samples were collected in the region of Porto Grande (Amapá, Brazil) and analyzed in the laboratory for chemical properties, particle size distribution and color of dry and wet samples. The Munsell color components value and croma obtained using a colorimeter were used to predict soil organic matter content based on stepwise multiple linear regression. Models derived using all samples had R 2 of 0.66 for wet samples and 0.56 for dry samples, respectively, when validated using independent samples. It was possible to improve the models by separating the samples by soil class or texture. The models derived using colors obtained from wet samples were systematically better than those based on dry samples. Among soil classes, best results were obtained for Argissolos (Ultisols) and Latossolos (Oxisols), both having an R 2 of independent validation of 0.73 (wet sample). For texture, best results were obtained for very clayey soils, with an R 2 of validation of 0.81 (wet sample). The soil organic matter prediction models based on soil color have simplicity and potential to be...
ResumoO conhecimento do solo é um aspecto essencial para a aplicação de manejo adequado da cultura. Conciliar a pedologia ao desenvolvimento tecnológico é essencial para o progresso desta ciência. O presente trabalho tem por objetivo avaliar o uso de produtos do sensoriamento remoto conciliados a um sistema de informações geográficas, na caracterização de solos da região de Piracicaba. Para tanto, incursões a campo e coleta de dados em laboratório foram realizadas. Posteriormente, compilaram-se informações referentes a características qualitativas de rede drenagem e relevo utilizando-se estereoscopia em fotografias aéreas. Características quantitativas de altimetria e declividade através de modelo numérico de terreno, além de características espectrais para os diferentes solos e texturas obtidas a partir de imagens do Landsat 7. Tal metodologia resultou em um banco de dados, no qual se notam diferenças entre todos os solos em pelo menos um dos aspectos avaliados. As características qualitativas da rede de drenagem diferenciaram os solos, não ocorrendo o mesmo com os parâmetros quantitativos de relevo. No caso, os Latossolos e Neossolo Quartzarênicos tiveram grande similaridade. Por outro lado, houve diferença entre as características espectrais destes solos. As características de altitude tiveram maior contribuição na diferenciação dos solos em relação ao parâmetro declividade. A avaliação integrada de informações geotecnologicas permite obter um panorama próximo à real classe do solo.Palavras-chave: sensores, quantificação de atributos, agricultura de precisão. Geotechnologic method on the characterization of soils developed from different pattern materials AbstractSoil knowledge is essential for implementing appropriate management in agriculture. It is necessary to conciliate pedology with technological development to persuade the progress of soil science. This study aims to evaluate the use of remote sensing products accomplished with a geographic information system in the characterization of soils from Piracicaba region. Field inspection and data collection were performed. Subsequently, information was compiled regarding the qualitative characteristics of drainage network and topography using aerial photographs. Quantitative characteristics of elevation and slope from digital elevation model and spectral characteristics related to soil texture acquired from Landsat 7 images were considered. This methodology resulted in a database, which showed significant differences between all soils in at least one aspect. The qualitative characteristics of the drainage network differentiated soils, although it did not happen with the quantitative relief parameters. In this case, the Oxisols and Quartzipsamments showed high similarity. Moreover, there were differences between the spectral characteristics of the soils. The characteristics of altitude were the major contributors in soil differentiation. Integrated assessment of geoinformation allowed more realistic scenery of soil classes.
When the harvesting of sugarcane involves a mechanized process, plant residues remain on the soil surface, which makes proximal and remote sensing difficult to monitor. This study aimed to evaluate, under laboratory conditions, differences in the soil spectral behavior of surface layers Quartzipsamment and Hapludox soil classes due to increasing levels of sugarcane's dry (DL) and green (GL) leaf cover on the soil. Soil cover was quantified by supervised classification of the digital images (photography) taken of the treatments. The spectral reflectance of the samples was obtained using the FieldSpec Pro (350 to 2500 nm). TM-Landsat bands were simulated and the Normalized Difference Vegetation Index (NDVI) and soil line were also determined. Soil cover ranged from 0 to 89 % for DL and 0 to 80 % for GL. Dry leaf covering affected the features of the following soil constituents: iron oxides (480, 530 and 900 nm) and kaolinite (2200 nm). Water absorption (1400 and 1900 nm) and chlorophyll (670 nm) were determinant in differentiating between bare soil and GL covering. Bands 3 and 4 and NDVI showed pronounced variations as regards differences in soil cover percentage for both DL and GL. The soil line allowed for discrimination of the bare soil from the covered soil (DL and GL).High resolution sensors from about 50 % of the DL or GL covering are expected to reveal differences in soil spectral behavior. Above this coverage percentage, soil assessment by remote sensing is impaired.
A Deus, pela vida, pela saúde, e pela família com que me presenteou. Ofereço
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.