Previous studies have indicated that acute treatment with the monoamine stabilizer OSU-6162 (5 mg/kg), which has a high affinity for Sigma1R, significantly increased the density of accumbal shell D2R-Sigma1R and A2AR-D2R heteroreceptor complexes following cocaine self-administration. Ex vivo studies using the A2AR agonist CGS21680 also suggested the existence of enhanced antagonistic accumbal A2AR-D2R allosteric interactions after treatment with OSU-6162 during cocaine self-administration. However, a 3-day treatment with OSU-6162 (5 mg/kg) failed to alter the behavioral effects of cocaine self-administration. To test these results and the relevance of OSU-6162 (2.5 mg/kg) and/or A2AR (0.05 mg/kg) agonist interactions, we administered low doses of receptor agonists during cocaine self-administration and assessed their neurochemical and behavioral effects. No effects were observed on cocaine self-administration; however, marked and highly significant increases using the proximity ligation assay (PLA) were induced by the co-treatment on the density of the A2AR-D2R heterocomplexes in the nucleus accumbens shell. Significant decreases in the affinity of the D2R high- and low-affinity agonist binding sites were also observed. Thus, in low doses, the highly significant neurochemical effects observed upon cotreatment with an A2AR agonist and a Sigma1R ligand on the A2AR-D2R heterocomplexes and their enhancement of allosteric inhibition of D2R high-affinity binding are not linked to the modulation of cocaine self-administration. The explanation may be related to an increased release of ATP and adenosine from astrocytes in the nucleus accumbens shell in cocaine self-administration. This can lead to increased activation of the A1R protomer in a putative A1R-A2AR-D2R complex that modulates glutamate release in the presynaptic glutamate synapse. We hypothesized that the integration of changes in presynaptic glutamate release and postjunctional heteroreceptor complex signaling, where D2R plays a key role, result in no changes in the firing of the GABA anti-reward neurons, resulting in no reduction in cocaine self-administration in the present experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.