This paper describes a single-image super-resolution (SR) algorithm based on nonnegative neighbor embedding. It belongs to the family of single-image example-based SR algorithms, since it uses a dictionary of low resolution (LR) and high resolution (HR) trained patch pairs to infer the unknown HR details. Each LR feature vector in the input image is expressed as the weighted combination of its K nearest neighbors in the dictionary; the corresponding HR feature vector is reconstructed under the assumption that the local LR embedding is preserved. Three key aspects are introduced in order to build a low-complexity competitive algorithm: (i) a compact but efficient representation of the patches (feature representation) (ii) an accurate estimation of the patches by their nearest neighbors (weight computation) (iii) a compact and already built (therefore external) dictionary, which allows a one-step upscaling. The neighbor embedding SR algorithm so designed is shown to give good visual results, comparable to other state-of-the-art methods, while presenting an appreciable reduction of the computational time.
This paper presents a novel example-based single-image superresolution procedure that upscales to high-resolution (HR) a given low-resolution (LR) input image without relying on an external dictionary of image examples. The dictionary instead is built from the LR input image itself, by generating a double pyramid of recursively scaled, and subsequently interpolated, images, from which self-examples are extracted. The upscaling procedure is multipass, i.e., the output image is constructed by means of gradual increases, and consists in learning special linear mapping functions on this double pyramid, as many as the number of patches in the current image to upscale. More precisely, for each LR patch, similar self-examples are found, and, because of them, a linear function is learned to directly map it into its HR version. Iterative back projection is also employed to ensure consistency at each pass of the procedure. Extensive experiments and comparisons with other state-of-the-art methods, based both on external and internal dictionaries, show that our algorithm can produce visually pleasant upscalings, with sharp edges and well reconstructed details. Moreover, when considering objective metrics, such as Peak signal-to-noise ratio and Structural similarity, our method turns out to give the best performance.
This paper describes a novel method for single-image superresolution (SR) based on a neighbor embedding technique which uses Semi-Nonnegative Matrix Factorization (SNMF). Each low-resolution (LR) input patch is approximated by a linear combination of nearest neighbors taken from a dictionary. This dictionary stores low-resolution and corresponding high-resolution (HR) patches taken from natural images and is thus used to infer the HR details of the super-resolved image. The entire neighbor embedding procedure is carried out in a feature space. Features which are either the gradient values of the pixels or the mean-subtracted luminance values are extracted from the LR input patches, and from the LR and HR patches stored in the dictionary. The algorithm thus searches for the K nearest neighbors of the feature vector of the LR input patch and then computes the weights for approximating the input feature vector. The use of SNMF for computing the weights of the linear approximation is shown to have a more stable behavior than the use of LLE and lead to significantly higher PSNR values for the super-resolved images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.