Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Ninety percent of ALS patients are sporadic cases (sALS) with no clear genetic linkage. Accumulating evidence indicates that various microRNAs (miRNAs), expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, microRNA dysregulation contributes to some mental disorders and neurodegeneration diseases. In our research, the expression of one selected miRNA, miR-338-3p, which previously we have found over-expressed in blood leukocytes, was studied in several different tissues from sALS patients. For the first time, we detected a specific microRNA disease-related upregulation, miR-338-3p, in blood leukocytes as well in cerebrospinal fluid, serum, and spinal cord from sALS patients. Besides, staining of in situ hybridization showed that the signals of miR-338-3p were localized in the grey matter of spinal cord tissues from sALS autopsied patients. We propose that miRNA profiles found in tissue samples from sALS patients can be relevant to understand sALS pathogenesis and lead to set up effective biomarkers for sALS early diagnosis.
Atoll‐like structures of the endemic Mediterranean seagrass Posidonia oceanica were encountered in the innermost area of the Stagnone di Marsala, a semi‐enclosed coastal lagoon along the western coasts of Sicily. The area is characterized by limited water exchange with the open sea and by a marked seasonal variation of water salinity and temperature, reaching beyond the theoretical tolerance limits of the species. In the present study we determined the genetic composition of the atoll‐like structures, as well as the growth performance and flowering rate of these stands. We also assessed whether and to what extent the atoll‐like structures are genetically isolated from plants growing in meadows outside the lagoon. For this purpose we utilized 13 microsatellite markers to genotype single shoots sampled inside and outside the lagoon. Lepidochronological analyses were performed on the same shoots to determine the annual rhizome growth rate, the number of leaves and the inflorescences formed as an estimate of growth‐ and reproductive performance over the years. The innermost area of the lagoon showed a lower number of alleles, a lower percentage of polymorphic loci, a lower clonal diversity, but higher heterozygosis excess with respect to the other areas analysed. Spatial autocorrelation was here significant, up to slightly below 300 m. Shoots collected in the atolls exhibited a 25% lower vertical growth rate and 16% lower leaf formation in comparison to those in open‐sea meadows. No flowering events were recorded during 24 years of investigation, whereas inflorescences were observed frequently in meadows outside the lagoon. Results from Fst and factorial correspondence analysis confirmed the expected genetic isolation of the confined atolls with respect to the meadows outside the lagoon and revealed limited gene flow within the lagoon itself. Apparently, the enclosed system of the Stagnone lagoon is genetically isolated, with a possible selection of genotypes adapted to persistent stressful conditions, consistent with reduced growth and lack of flowering events.
BackgroundDiatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods.Principal FindingsHere we show that two days of feeding on a strong oxylipin-producing diatom (Skeletonema marinoi) is sufficient to inhibit a series of genes involved in aldehyde detoxification, apoptosis, cytoskeleton structure and stress response in the copepod Calanus helgolandicus. Of the 18 transcripts analyzed by RT-qPCR at least 50% were strongly down-regulated (aldehyde dehydrogenase 9, 8 and 6, cellular apoptosis susceptibility and inhibitor of apoptosis IAP proteins, heat shock protein 40, alpha- and beta-tubulins) compared to animals fed on a weak oxylipin-producing diet (Chaetoceros socialis) which showed no changes in gene expression profiles.ConclusionsOur results provide molecular evidence of the toxic effects of strong oxylipin-producing diatoms on grazers, showing that primary defense systems that should be activated to protect copepods against toxic algae can be inhibited. On the other hand other classical detoxification genes (glutathione S-transferase, superoxide dismutase, catalase, cytochrome P450) were not affected possibly due to short exposure times. Given the importance of diatom blooms in nutrient-rich aquatic environments these results offer a plausible explanation for the inefficient use of a potentially valuable food resource, the spring diatom bloom, by some copepod species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.