Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of “live cephalopods” became regulated within the European Union by Directive 2010/63/EU on the “Protection of Animals used for Scientific Purposes”, giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce “guidelines” and the potential contribution of neuroscience research to cephalopod welfare.
Cadmium (Cd), copper (Cu), mercury (Hg), selenium (Se) and zinc (Zn) were determined in the liver, kidney and muscle of 29 loggerhead turtles, Caretta caretta, from the South Tyrrhenian Sea (Western Mediterranean). No significant differences (p>0.05) were detected between males and females. Trace element concentrations were not influenced by the size of the specimen except Se in the liver, which was negatively correlated with the curved carapace length (p<0.001). Muscles generally displayed the lowest trace element burdens, with the exception of Zn which contained concentrations as high as 176 microgg-1dwt. Kidneys displayed the highest Cd and Se mean concentrations (57.2+/-34.6 and 15.5+/-9.1 microgg-1dwt, respectively), while liver exhibited the highest Cu and Hg levels (37.3+/-8.7 and 1.1+/-1.7 microgg-1dwt, respectively). Whichever tissue is considered, the toxic elements had elevated coefficients of variation (i.e. from 60% to 177%) compared to those of the essential ones (i.e. from 14% to 65%), which is a consequence of homeostatic processes for Cu, Se and Zn. Globally, the concentrations of Hg remained low in all the considered tissues, possibly the result of low trophic level in sea turtles. In contrast, the diet of loggerhead turtles would result in a significant exposure to Cd. Highly significant correlations between Cd and Cu and Zn in the liver and kidney suggest that efficient detoxification processes involving MT occur which prevent Cd toxicity in loggerhead turtles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.