Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.
Many marine organisms have developed adhesives that are able to bond under water, overcoming the challenges associated with wet adhesion. A key element in the processing of several natural underwater glues is complex coacervation, a liquid–liquid phase separation driven by complexation of oppositely charged macromolecules. Inspired by these examples, the development of a fully synthetic complex coacervate‐based adhesive is reported with an in situ setting mechanism, which can be triggered by a change in temperature and/or a change in ionic strength. The adhesive consists of a matrix of oppositely charged polyelectrolytes that are modified with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) grafts. The adhesive, which initially starts out as a fluid complex coacervate with limited adhesion at room temperature and high ionic strength, transitions into a viscoelastic solid upon an increase in temperature and/or a decrease in the salt concentration of the environment. Consequently, the thermoresponsive chains self‐associate into hydrophobic domains and/or the polyelectrolyte matrix contracts, without inducing any macroscopic shrinking. The presence of PNIPAM favors energy dissipation by softening the material and by allowing crack blunting. The high work of adhesion, the gelation kinetics, and the easy tunability of the system make it a potential candidate for soft tissue adhesion in physiological environments.
Most commercially available soft tissue glues offer poor performance in the human body. We have developed an injectable adhesive whose setting mechanism is activated by a change in environmental factors, i.e., temperature and/or ionic strength. The material and setting process are inspired by the adhesive processing mechanism observed in natural maritime glues. Complex coacervation, a liquid−liquid phase separation between oppositely charged polyelectrolytes, is thought to play an important role in the processing. Complex coacervates are characterized by a high water content, which inevitably weakens the glue. Here, we aim to increase the adhesive performance by systematically tuning the water content. Among the several strategies here explored, the most effective one is the mechanical removal of water using an extruder, resulting in an increase of work of adhesion by 1 order of magnitude compared to the original formulation.
A combined experimental and molecular dynamics (MD) study is performed to investigate the effect of polymer concentration on the zero shear rate viscosity η 0 of a salt-free aqueous solution of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), a flexible thermoresponsive weak polyelectrolyte with a bulky 3-methyl-1,1-diphenylpentyl unit as the terminal group. The study is carried out at room temperature (T = 298 K) with relatively short PDMAEMA chains (each containing N = 20 monomers or repeat units) at a fixed degree of ionization (α + = 100%). For the MD simulations, a thorough validation of several molecular mechanics force fields is first undertaken for assessing their capability to accurately reproduce the experimental observations and established theoretical laws. The generalized Amber force field in combination with the restrained electrostatic potential charge fitting method is eventually adopted. Three characteristic concentration regimes are considered: the dilute (from 5 to 10 wt %), the semidilute (from 10 to 20 wt %), and the concentrated (from 20 to 29 wt %); the latter two are characterized by polymer concentrations c p higher than the characteristic overlap concentration c p *. The structural behavior of the PDMAEMA chains in the solution is assessed by calculating the square root of their mean-square radius of gyration ⟨R g 2 ⟩ 0.5 , the square root of the average square chain end-to-end distance ⟨R ee 2 ⟩ 0.5 , the ratio ⟨R ee 2 ⟩/⟨R g 2 ⟩, and the persistence length L p . It is observed that at low polymer concentrations, PDMAEMA chains adopt a stiffer and slightly extended conformation because of excluded-volume effects (a good solvent is considered in this study) and electrostatic repulsions within the polymer chains. As the polymer concentration increases above 20 wt %, the PDMAEMA chains adopt more flexible conformations, as the excluded-volume effects seize and the charge repulsion within the polymer chains subsides. The effect of total polymer concentration on PDMAEMA chain dynamics in the solution is assessed by calculating the orientational relaxation time τ c of the chain, the center-of-mass diffusion coefficient D, and the zero shear rate viscosity η 0 ; the latter is also measured experimentally here and found to be in excellent agreement with the MD predictions.
In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.