A micromachined pressure sensor based on the measurement of the pressure-dependent thermal conductivity of gaseous media (Pirani principle) is presented. The sensor consists of a freestanding microbridge with a defined distance to the substrate which acts as a heat sink. The theory to compute the necessary geometrical dimensions of the sensor element is presented. Due to a novel fabrication process, based on a sacrificial layer of ZnO, the sensor can readily be adapted to operate in different pressure ranges, even exceeding atmospheric pressure. A fully integrated bridge arrangement was used to compensate for ambient temperature changes. Experimental results for different sensor geometries are presented which correspond well with the theory. Basic design rules for micromachined Pirani pressure sensors are derived from the measurements.
Different kinds of thin-film coatings were investigated with regard to their applicability as hydrophobic coatings for MEMS. The films were deposited onto silicon and borosilicate glass substrates by spincoating of Dyneon TM PTFE and PFA, plasmapolymerization of HMDS-N and C 4 F 8 as well as liquid-phase and vapor-phase coating of SAMs from DDMS, FDTS, FOTS and Geleste Aquaphobe TM CM. The layer properties were analyzed using profilometry, FTIR, SEM and contact angle measurements. Furthermore, the adhesion of the layers to the substrates was determined in an acetone ultrasonic bath. The influence of various deposition process parameters on the properties of the films was investigated. As these layers can be used in microfluidic systems, as water-repellent layers and as anti-stiction coatings, they are suited for versatile fields of application.
A microelectromechanical system (MEMS) vapor-jet pump for vacuum generation in miniaturized analytical systems, e.g., micro-mass-spectrometers (Wapelhorst, E., Hauschild, J., and Mueller, J., 2005, “A Fully Integrated Micro Mass Spectrometer,” in Fifth Workshop on Harsh-Environment Mass Spectrometry;Hauschild, J., Wapelhorst, E., and Mueller, J., 2005, “A Fully Integrated Plasma Electron Source for Micro Mass Spectrometers,” in Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS), pp. 476–478), is presented. A high velocity nitrogen or water vapor jet is used for vacuum generation. Starting from atmospheric pressure, a high throughput of more than 23ml∕min and an ultimate pressure of 495mbars were obtained with this new type of micropump. An approach for the full integration of all components of the pump is presented and validated by experimental results. The pump is fabricated from silicon and glass substrates using standard MEMS fabrication techniques including deep reactive ion etching, trichlorosilane molecular vapor deposition, and metal-assisted chemical etching for porous silicon fabrication. Micromachined pressure sensors based on the Pirani principle have been developed and integrated into the pump for monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.