Many interesting program properties like determinism or information flow security are hyperproperties, that is, they relate multiple executions of the same program. Hyperproperties can be verified using relational logics, but these logics require dedicated tool support and are difficult to automate. Alternatively, constructions such as selfcomposition represent multiple executions of a program by one product program, thereby reducing hyperproperties of the original program to trace properties of the product. However, existing constructions do not fully support procedure specifications, for instance, to derive the determinism of a caller from the determinism of a callee, making verification non-modular. We present modular product programs, a novel kind of product program that permits hyperproperties in procedure specifications and, thus, can reason about calls modularly. We demonstrate its expressiveness by applying it to information flow security with advanced features such as declassification and termination-sensitivity. Modular product programs can be verified using off-the-shelf verifiers; we have implemented our approach to secure information flow using the Viper verification infrastructure.
No abstract
Smart contracts are programs that execute in blockchains such as Ethereum to manipulate digital assets. Since bugs in smart contracts may lead to substantial financial losses, there is considerable interest in formally proving their correctness. However, the specification and verification of smart contracts faces challenges that rarely arise in other application domains. Smart contracts frequently interact with unverified, potentially adversarial outside code, which substantially weakens the assumptions that formal analyses can (soundly) make. Moreover, the core functionality of smart contracts is to manipulate and transfer resources; describing this functionality concisely requires dedicated specification support. Current reasoning techniques do not fully address these challenges, being restricted in their scope or expressiveness (in particular, in the presence of re-entrant calls), and offering limited means of expressing the resource transfers a contract performs. In this paper, we present a novel specification methodology tailored to the domain of smart contracts. Our specifications and associated reasoning technique are the first to enable: (1) sound and precise reasoning in the presence of unverified code and arbitrary re-entrancy, (2) modular reasoning about collaborating smart contracts, and (3) domain-specific specifications for resources and resource transfers, expressing a contract's behaviour in intuitive and concise ways and excluding typical errors by default. We have implemented our approach in 2vyper, an SMT-based automated verification tool for Ethereum smart contracts written in Vyper, and demonstrated its effectiveness for verifying strong correctness guarantees for real-world contracts.
Many interesting program properties like determinism or information flow security are hyperproperties, that is, they relate multiple executions of the same program. Hyperproperties can be verified using relational logics, but these logics require dedicated tool support and are difficult to automate. Alternatively, constructions such as self-composition represent multiple executions of a program by one product program, thereby reducing hyperproperties of the original program to trace properties of the product. However, existing constructions do not fully support procedure specifications, for instance, to derive the determinism of a caller from the determinism of a callee, making verification non-modular. We present modular product programs, a novel kind of product program that permits hyperproperties in procedure specifications and, thus, can reason about calls modularly. We provide a general formalization of our product construction and prove it sound and complete. We demonstrate its expressiveness by applying it to information flow security with advanced features such as declassification and termination-sensitivity. Modular product programs can be verified using off-the-shelf verifiers; we have implemented our approach for both secure information flow and general hyperproperties using the Viper verification infrastructure. Our evaluation demonstrates that modular product programs can be used to prove hyperproperties for challenging examples in reasonable time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.